Skip to main content

Multi-objective Topology Optimization Design of Micro-structures

  • Chapter
  • First Online:
  • 983 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 49))

Abstract

This contribution proposes a methodology for the multi-objective synthesis and/or topology optimization of microstructures based on the topological derivative concept. The macroscopic properties are estimated by a standard multi-scale constitutive theory where the macroscopic responses are volume averages of their microscopic counterparts over a Representative Volume Element (RVE). We introduce a macroscopic cost functional that combines the mechanical and thermal effects in a single expression, allowing to design an RVE satisfying a specific thermo-mechanical macroscopic behavior. The algorithm is of simple computational implementation and relies in a level-set domain representation method. The effectiveness of the proposed methodology is illustrated by a set of finite element-based numerical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allaire, G., Jouve, F., Van Goethem, N.: Damage and fracture evolution in brittle materials by shape optimization methods. J. Comput. Phys. 230(12), 5010–5044 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgreen, R.F.: An isotropic three-dimensional structure with Poisson’s ratio–1. J. Elast. 15(4), 427–430 (1985)

    Article  Google Scholar 

  3. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amstutz, S., Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amstutz, S., Novotny, A.A., de Souza Neto, E.A.: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. Comput. Methods Appl. Mech. Eng. 233–236, 123–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auriault, J.L.: Effective macroscopic description for heat conduction in periodic composites. Int. J. Heat Mass Transf. 26(6), 861–869 (1983)

    Article  MATH  Google Scholar 

  7. Auriault, J.L., Royer, P.: Double conductivity media: a comparison between phenomenological and homogenization approaches. Int. J. Heat Mass Transf. 36(10), 2613–2621 (1993)

    Article  MATH  Google Scholar 

  8. Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis for Periodic Microstructures. North Holland, Amsterdam (1978)

    Google Scholar 

  9. Celentano, D.J., Dardati, P.M., Godoy, L.A., Boeri, R.E.: Computational simulation of microstructure evolution during solidification of ductile cast iron. Int. J. Cast Met. Res. 21(6), 416–426 (2008)

    Article  Google Scholar 

  10. de Souza Neto, E.A., Amstutz, S., Giusti, S.M., Novotny, A.A.: Topology optimization design of micro-structures considering different multi-scale models. Comput. Model. Eng. Sci. 62(1), 23–56 (2010)

    MathSciNet  MATH  Google Scholar 

  11. de Souza Neto, E.A., Feijóo, R.A.: On the equivalence between spatial and material volume averaging of stress in large strain multi-scale solid constitutive models. Mech. Mater. 40(10), 803–811 (2008)

    Article  Google Scholar 

  12. de Souza Neto, E.A., Feijóo, R.A.: Variational foundations of large strain multiscale solid constitutive models: kinematical formulation. In: Advanced Computational Materials Modeling: From Classical to Multi-Scale Techniques. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011)

    Google Scholar 

  13. Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. Trans. ASME 50(4), 1010–1020 (1983)

    Article  MATH  Google Scholar 

  14. Giusti, S.M., Blanco, P.J., de Souza Neto, E.A., Feijóo, R.A.: An assessment of the Gurson yield criterion by a computational multi-scale approach. Eng. Comput. 26(3), 281–301 (2009)

    Article  MATH  Google Scholar 

  15. Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. In: Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 466, pp. 1703–1723 (2010)

    Google Scholar 

  16. Giusti, S.M., Novotny, A.A., de Souza Neto, E.A., Feijóo, R.A.: Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. J. Mech. Phys. Solids 57(3), 555–570 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giusti, S.M., Novotny, A.A., de Souza Neto, E.A., Feijóo, R.A.: Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes. Comput. Methods Appl. Mech. Eng. 198(5–8), 727–739 (2009)

    Article  MATH  Google Scholar 

  18. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rule for porous ductile media. J. Eng. Mater. Technol. Trans. ASME 99(1), 2–15 (1977)

    Article  Google Scholar 

  19. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

  21. Hintermüller, M., Laurain, A.: Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vis. 35, 1–22 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36(2), 235–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lakes, R.: Foam structures with negative Poisson’s ratio. Sci. AAAS 235(4792), 1038–1040 (1987)

    Google Scholar 

  24. Mandel, J.: Plasticité Classique et Viscoplasticité. CISM Lecture Notes. Springer, Udine (1971)

    MATH  Google Scholar 

  25. Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172(1–4), 109–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miehe, C., Schotte, J., Schröder, J.: Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)

    Article  Google Scholar 

  27. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  28. Novotny, A.A.: Topological derivative for multi-scale linear elasticity models in three spatial dimensions. Optimization of Structures and Components. Advanced Structured Materials, vol. 43. Springer, Switzerland (2013)

    Chapter  Google Scholar 

  29. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  30. Ostoja-Starzewski, M., Schulte, J.: Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys. Rev. B 54(1), 278–285 (1996)

    Article  Google Scholar 

  31. Oyen, M.L., Ferguson, V.L., Bembey, A.K., Bushby, A.J., Boyde, A.: Composite bounds on the elastic modulus of bone. J. Biomech. 41(11), 2585–2588 (2008)

    Article  Google Scholar 

  32. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

    MATH  Google Scholar 

  33. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Speirs, D.C.D., de Souza Neto, E.A., Perić, D.: An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. J. Biomech. 41(12), 2673–2680 (2008)

    Article  Google Scholar 

  35. Van Goethem, N., Novotny, A.A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33(16), 197–1994 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Miguel Giusti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giusti, S.M., Novotny, A.A. (2016). Multi-objective Topology Optimization Design of Micro-structures. In: Muñoz-Rojas, P. (eds) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-04265-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04265-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04264-0

  • Online ISBN: 978-3-319-04265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics