Skip to main content

Material Model Based on Response Surfaces of NURBS Applied to Isotropic and Orthotropic Materials

  • Chapter
  • First Online:
Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 49))

Abstract

A finite element analysis depends on the material model used to represent the material behavior of a physical phenomenon. Some materials expose a constitutive behavior that cannot be represented by analytical models. Complex material behavior requires the use of appropriate material models able to represent the response under a wide range of load conditions. This contribution uses a response surface based on non-uniform rational B-splines (NURBS) surfaces to define direct biaxial stress–strain relations. For the application in a finite element method, an approach is suggested to compute the matrix of material coefficients from these surfaces. The method was developed for a plane stress condition, which can be used for membranes, beams and thin plates. Two applications of this method are shown: a large strain elastoplastic material behavior with von Mises yield criterion and a linear elastic orthotropic material behavior (Münsch-Reinhardt). The advantage of this material model is that from results of experimental tests, any kind of material can be modeled by fitting the response surface parameters subjected to monotonic load. This approach might be a good alternative to model new fabrics and polymers used in membrane structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bridgens, B., Gosling, P.: Direct stress-strain representation for coated woven fabrics. Comput. Struct. 82, 1913–1927 (2004)

    Article  Google Scholar 

  2. Coelho, M., Roehl, D., Bletzinger, K.U.: Using NURBS as response surface for membrane material behavior. In: Textile Composites and Inflatable Structures VI, vol. 1, pp. 166–175. Artes Gráficas Torres S.A., Barcelona (2013)

    Google Scholar 

  3. Coelho, M.A.O.: Analysis of pneumatic structures considering nonlinear material models and pressure-volume coupling. Ph.D. thesis, Pontificia Universidade Catolica do Rio de Janeiro (2012)

    Google Scholar 

  4. Fischer, M.: Carat++ Dokumentation. Lehrstuhl für Statik - Technische Universität München (2008)

    Google Scholar 

  5. Gosling, P., Bridgens, B.: Material testing and computational mechanics: a new philosophy for architectural fabrics. Int. J. Space Struct. 23(4), 215–232 (2008)

    Article  Google Scholar 

  6. Gruttmann, F., Taylor, R.: Theory and finite element formulation of rubberlike membrane shells using principal stretches. Int. J. Numer. Methods Eng. 35(5), 1111–1126 (1992)

    Article  MATH  Google Scholar 

  7. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kiendl, J., Bazilevs, Y., Hsu, M.C., Wüchner, R., Bletzinger, K.U.: The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199(37–40), 2403–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kiendl, J., Bletzinger, K.U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiendl, J., Schmidt, R., Wüchner, R., Bletzinger, K.U.: Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput. Methods Appl. Mech. Eng. 274, 148–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Linhard, J.: Numerish-mechanische Betrachtung des Entwurfsprozesses von Membrantragwerken. Ph.D. thesis, Technischen Universität München, Fakultät für Bauingenieur- und Vermessungswesen (2009)

    Google Scholar 

  12. Münsch, R., Reinhardt, H.W.: Zur Berechnung von Membrantragwerken aus beschichteten Geweben mit Hilfe genäherter elastischer Materialparameter. Bauingenieur 70(6), 271–275 (1995)

    Google Scholar 

  13. Piegl, L.: On NURBS: a survey. IEEE Comput. Graphics Appl. 11(1), 55–71 (1991)

    Google Scholar 

  14. Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)

    Google Scholar 

  15. Rogers, D.F.: An Introduction to NURBS: With Historical Perspective, 1st edn. Morgan Kaufmann (2000)

    Google Scholar 

  16. Schmidt, R., Kiendl, J., Bletzinger, K.U., Wüchner, R.: Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis. Comput. Vis. Sci. 13(7), 315–330

    Google Scholar 

  17. Sevilla, R., Fernández-Méndez, S., Huerta, A.: 3D NURBS-enhanced finite element method (NEFEM) Sonia Fernández-Méndez. Int. J. Numer. Methods Eng. 88, 103–125 (2011)

    Article  MATH  Google Scholar 

  18. Simo, J., Hughes, T.: Computational Inelasticity, vol. 7. Springer (1998)

    Google Scholar 

  19. Simo, J.C., Taylor, R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  20. Souza Neto, E., Perić, D., Owen, D.: Computational Methods for Plasticity: Theory and Applications. Wiley (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coelho, M., Roehl, D., Bletzinger, KU. (2016). Material Model Based on Response Surfaces of NURBS Applied to Isotropic and Orthotropic Materials. In: Muñoz-Rojas, P. (eds) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-04265-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04265-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04264-0

  • Online ISBN: 978-3-319-04265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics