Advertisement

Metallic Foam Density Distribution Optimization Using Genetic Algorithms and Voronoi Tessellation

  • Pablo C. ResendeEmail author
  • Renato V. Linn
  • Branca F. de Oliveira
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 49)

Abstract

Metallic foams have a very particular structure due to their high specific stiffness. Density plays an important role on their structural response and is also determinant to the foam’s weight. The main goal of this paper is to find an ideal density distribution to open-cell metallic foams in order to achieve optimized structural performance. A density distribution optimization using an irregular description of the foam by a Voronoi tessellation and a genetic algorithm for the numerical optimization is presented in this work. The structural analysis is performed with linear elastic beam finite elements and the foam structure is modeled as a Voronoi tessellation. The density is related to the number of Voronoi seeds, which may configure lighter or denser foams and vary throughout the model. The minimization and maximization of stiffness were analyzed for different structural applications in order to demonstrate the capability of the developed methodology.

Keywords

Metallic foam Density optimization Voronoi tessellation Genetic algorithm 

Notes

Acknowledgments

We thank CNPq, CAPES, FAPERGS, CESUP, and PROPESQ/UFRGS for continuous support of our research projects.

References

  1. 1.
    Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bendsøe, M.P., Díaz, A.R., Lipton, R., Taylor, J.E.: Optimal design of material properties and material distribution for multiple loading conditions. Int. J. Numer. Meth. Eng. 38, 1149–1170 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bruns, T.E., Tortorelli, D.A.: Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, USA, pp. 1874–1882 (1998)Google Scholar
  4. 4.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Springer 1997Google Scholar
  5. 5.
    Dementjev, A.G., Tarakanov, O.G.: Influence of the cellular structure of foams on their mechanical properties. Mech. Polym. vol. 4, pp. 594–602 (1970a) (in Russian)Google Scholar
  6. 6.
    Dimčić, M.: Structural optimization of grid shells based on genetic algorithms. Ph.D. thesis, Institut für Tragkonstruktionen und Konstruktives Entwerten der Universität Suttgart (2011)Google Scholar
  7. 7.
    Mezura-Montes, E.: Constraint-Handling in Evolutionary Optimization. Springer, Berlin (2009)CrossRefGoogle Scholar
  8. 8.
    Galapagos: Evolutionary Solver. http://www.grasshopper3d.com/group/galapagos (2013)
  9. 9.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Pergamon Press, Oxford, UK (1988)zbMATHGoogle Scholar
  10. 10.
    Grasshopper: Generative Modeling of Rhino. http://www.grasshopper3d.com/ (2013)
  11. 11.
    Karamba: User Manual: Parametric Structural Modeling. Vienna (2012)Google Scholar
  12. 12.
    Lemonge, A.C.C., Barbosa, H.J.C.: An adaptive penalty scheme for genetic algorithms in structural optimization. Int. J. Numer. Methods Eng. 59, 703–736 (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Linn, R.V., Oliveira, B.F.: Finite element simulation of compression behavior of cellular. In: Proceedings of the CILAMCE 2008—XXIX Iberian-Latin American Congress on Computational Methods in Engineering (2008)Google Scholar
  14. 14.
    Lipka, A., Ramm, A.L.E.: A concept for the optimization of structures with foam core. In: Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro (2005)Google Scholar
  15. 15.
    Nanakorn, P., Meesomklin, K.: An adaptive penalty function in genetic algorithms for structural design optimization. Comput. Struct. 79(29–30), 2527–2539 (2001)CrossRefGoogle Scholar
  16. 16.
    Öchsner, A., Lamprecht, K.: On the uniaxial compression behavior of regular shaped cellular metals. Mech. Res. Commun. 30, 573–579 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Gurson Damage Model: applications to case studies. In: Proceedings of the CILAMCE 2006—XXVII Iberian-Latin American Congress on Computational Methods in Engineering (2006)Google Scholar
  18. 18.
    Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Finite element simulation of compression tests on cellular metals. In: Proceedings of the CILAMCE 2007—XXVIII Iberian-Latin American Congress on Computational Methods in Engineering (2007)Google Scholar
  19. 19.
    Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Comparison between RVE and full mesh approaches for the simulation of compression tests on cellular metals. Materialwiss. Werkstofftech. 39(2), 133–138 (2008)CrossRefGoogle Scholar
  20. 20.
    Powell, D., Skolnick, M.: Using genetic algorithms in engineering design optimization with non-linear constraints. In: Proceeding of the 5th International Conference on Genetic Algorithms. Morgan Kaufmann Publishers (1993)Google Scholar
  21. 21.
    Rhinoceros: User Manual, version 5.0 (2013)Google Scholar
  22. 22.
    Ribeiro-Ayeh, S.: Finite element modelling of the mechanics of solid foam materials. Ph.D. thesis, Stockolm, Sweden (2005)Google Scholar
  23. 23.
    Shulmeister, V.: Modelling of the mechanical properties of low-density foams. Ph.D. thesis, Delf University of Technology (1998)Google Scholar
  24. 24.
    Van Der Burg, M.W.D., Shulmeister, V., Van Der Geissen, E., Marissen, R.: On the linear elastic properties of regular and random open-cell foam models. J. Cell. Plast. 33(1), 31–54 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo C. Resende
    • 1
    Email author
  • Renato V. Linn
    • 2
  • Branca F. de Oliveira
    • 1
  1. 1.Graduate Program in Design (PGDesign)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Graduate Program in Civil Engineering (PPGEC)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations