Advertisement

Laser Beam Drilling of Cellular Metals: Numerical Simulation

  • Manuel AraújoEmail author
  • Markus Merkel
  • Andreas Öchsner
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 49)

Abstract

Laser drilling is a highly efficient technique to generate holes in almost any material. It offers an alternative manufacturing method to mechanical drilling and water stream cutting. The relatively small amount of heat involved in the process results in a small heat affected zone. This characteristic makes laser processing interesting for several engineering application. Within this chapter the drilling process is applied to cellular materials. A program code was developed and implemented in order to predict the relation between the initial parameters and the final characteristics of the drilling process, such as depth-time behavior for each amount of initial energy. The simulation of the laser drilling process uses the concept of homogenized cellular materials. It is studied the influence of the heat intensity of the laser in the process. Also the influence of material parameters like thermal conductivity, specific heat and enthalpy are studied. The results of the simulations of the drilling process closely match to the experimental results. The thermal conductivity is of paramount importance for the final results of the laser drilling procedures. The program code can be used for example to the optimization of the laser drilling procedures and to determine or confirm the material properties of the materials as well.

Keywords

Laser beam drilling Cellular metals Finite element method Temperature analysis 

References

  1. 1.
    Öchsner, A., Augustin, C.: Multifunctional Metallic Hollow Sphere Structures: Manufacturing, Properties and Application. Springer, Berlin (2009)CrossRefGoogle Scholar
  2. 2.
    Araújo, M., Merkel, M., Riegel, H., et al.: On the numerical simulation of laser beam cutting of hollow sphere structures. Materialwiss Werkst 44, 491–496 (2013)CrossRefGoogle Scholar
  3. 3.
    Evans, A.G., Hutchinson, J.W., Ashby, M.F.: Multifunctionality of cellular metal systems. Prog. Mater Sci. 43, 171–221 (1998)CrossRefGoogle Scholar
  4. 4.
    Nemat-Nasser, S., Kang, W.J., McGee, J.D., et al.: Experimental investigation of energy-absorption characteristics of components of sandwich structures. Int. J. Impact Eng. 34, 1119–1146 (2007)CrossRefGoogle Scholar
  5. 5.
    Golovin, I.S., Sinning, H.R.: Damping in some cellular metallic materials. J. Alloy. Compd. 355, 2–9 (2003)CrossRefGoogle Scholar
  6. 6.
    Ashby, M., Fleck, N., Wadley, H., et al.: Metal Foams: A Design Guide. Butterworh-Heinemann, Boston (2000)Google Scholar
  7. 7.
    Pannert, W., Winkler, R., Merkel, M.: On the acoustical properties of metallic hollow sphere structures. Mater. Lett. 63, 1121–1124 (2009)CrossRefGoogle Scholar
  8. 8.
    Winkler, R., Pannert, W., Merkel, M., et al.: Structure borne sound in metallic hollow sphere structures. Materialwiss Werkst 42, 365–369 (2011)CrossRefGoogle Scholar
  9. 9.
    Solórzano, E., Rodríguez-Perez, M.A., Saja, J.A.: Thermal conductivity of metallic hollow sphere structures: an experimental, analytical and comparative study. Mater. Lett. 63–13, 1128–1130 (2009)CrossRefGoogle Scholar
  10. 10.
    Zhao, C.Y., Lu, T.J., Hodson, H.P., et al.: The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater. Sci. Eng. A 367, 123–131 (2004)CrossRefGoogle Scholar
  11. 11.
    Fiedler, T., Öchsner, A.: Influence of the morphology of joining on the heat transfer properties of periodic metal hollow sphere structures. Mater. Sci. Forum 553, 45–50 (2007)CrossRefGoogle Scholar
  12. 12.
    ALM GmbH (2006) Big AFS Test Structure for Ariane Rocket V booster. Cellmet News. http://www.metalfoam.net/cellmet-news_2006-1_net.pdf (2013). Accessed 2 May 2013
  13. 13.
    Kim, J.S., Lee, S.J., Shin, K.B.: Manufacturing and structural safety evaluation of a composite train carbody. Compos. Struct. 78, 468–476 (2007)CrossRefGoogle Scholar
  14. 14.
    Knox, E.M., Cowling, M.J., Winkle, I.E.: Adhesively bonded steel corrugated core sandwich construction for marine applications. Mar. Struct. 11, 185–204 (1998)CrossRefGoogle Scholar
  15. 15.
    Schmid, D.: Industrielle Fertigung. Europa-Lehrmittel, Haan-Gruiten (2011)Google Scholar
  16. 16.
    Apostolos, F., Panagiotis, S., Konstantinos, S., et al.: Energy efficiency assessment of laser drilling process. Phys. procedia 39, 776–783 (2012)CrossRefGoogle Scholar
  17. 17.
    Ramoli, L., Rashed, C.A.A., Fiaschi, M.: Experimental characterization of the inner surface in micro-drilling of spray holes: a comparison between ultrashort pulsed laser and EDM. Opt. Laser Technol. 56, 35–42 (2014)CrossRefGoogle Scholar
  18. 18.
    Tu, J., Paleocrassas, A.G., Reeves, N., et al.: Experimental characterization of a micro-hole drilling process with short micro-second pulses by a CW single-mode fiber laser. Opt. Laser Eng. 55, 275–283 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Li, S., Chen, G., Mazumder, J.: Experimental observation and simulation of keyhole dynamics during laser drilling. Opt. Laser Technol. 48, 405–414 (2013)CrossRefGoogle Scholar
  20. 20.
    Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of thin aluminum sheet. Opt. Laser Technol. 48, 461–474 (2013)CrossRefGoogle Scholar
  21. 21.
    Geuzaine, P., Grandmontb, C., Farhata, C.: Design and analysis of ALE schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. J. Comput. Phys. 191, 206–227 (2003)CrossRefGoogle Scholar
  22. 22.
    Riegel, H., Merkel, M., Öchsner, A.: Laser beam cutting of metallic hollow sphere structures. Materialwiss Werkst 43, 441–446 (2012)CrossRefGoogle Scholar
  23. 23.
    Oliveira, B.F., Cunda, L.A.B., Öchsner, A., et al.: Comparison between RVE and full mesh approches for the simulation of compression tests on cellular metals. Materialwiss Werkst 39, 133–138 (2008)CrossRefGoogle Scholar
  24. 24.
    Tanov, R., Tabiei, A.: Finite element implementation of a new sandwich homogenization procedure. Compos. Struct. 50, 49–58 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rekik, A., Bornert, M., Auslender, F., et al.: A methodology for an accurate evaluation of the linearization procedures in nonlinear mean field homogenization. C. R. Mec. 333, 789–795 (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    Yu, M., Zhu, P., Ma, Y.: Effects of particle clustering on the tensile properties and failure mechanisms of hollow spheres filled syntactic foams. Mater Des. 47, 80–89 (2013)CrossRefGoogle Scholar
  27. 27.
    Dondero, M., Cisilino, A.P., Carella, J.M., et al.: Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume element and BEM. Int. J. Heat Mass Transf. 54, 3874–3881 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zohdi, T.I., Wriggers, P.: Introduction to Computational Micromechanics, p. 20. Springer, Berlin (2005)Google Scholar
  29. 29.
    Nakamachi, E., Tam, N.N., Morimoto, H.: Multi-scale finite element analyses of sheet metals by using SEM-EBSD measured crystallographic RVE models. Int. J. Plast. 23, 450–489 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Poliševski, D.: Steady convection in porous media. Int. J. Eng. Sci. 23, 741–749 (1985)CrossRefzbMATHGoogle Scholar
  31. 31.
    Vadasz, P.: Equivalent initial conditions for compatibility between analytical and computational solutions of convection in porous media. Int. J. Nonlinear Mech. 36, 197–208 (2001)CrossRefzbMATHGoogle Scholar
  32. 32.
    Nield, D.A., Bejan, A.: Convection in Porous Media. Spring, New York (1999)Google Scholar
  33. 33.
    Incropera, F.P., DeWitt, D.P.: Introduction to Heat Transfer. Wiley, New York (1996)Google Scholar
  34. 34.
    Bergheau, J.M., Fortunier, R.: Finite Element Simulation of Heat Transfer, p. 119. Wiley, London (2008)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zanger, F., Boev, N., Schulze, V.: Novel approach for 3D simulation of a cutting process with adaptive remeshing technique. Procedia CIRP 31, 88–93 (2015)CrossRefGoogle Scholar
  36. 36.
    Huegel, H., Graf, T.: Laser in der Fertigung. Vieweg und Verlag, Germany (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Manuel Araújo
    • 1
    Email author
  • Markus Merkel
    • 2
  • Andreas Öchsner
    • 3
  1. 1.Minho UniversityGuimarãesPortugal
  2. 2.Aalen UniversityAalenGermany
  3. 3.Griffith School of EngineeringGriffith University (Gold Coast Campus)SouthportAustralia

Personalised recommendations