Skip to main content

Microbiotas are Transmitted Between Holobiont Generations

  • Chapter
  • First Online:
The Hologenome Concept: Human, Animal and Plant Microbiota

Abstract

The hologenome concept of evolution relies on ensuring the continuity of partnerships between holobiont generations. Accordingly, both host and symbiont genomes must be transmitted with accuracy from one generation to the next. The precise modes of vertical transmission of host genomes are well understood and need not be discussed here. However, in recent years, it has become clear that microbial symbionts can also be transmitted from parent to offspring by a variety of methods. In an insightful review on transmission of microbial symbionts, Bright and Bulgheresi (Nat Rev Microbiol 8:218–230, 2010) divide the modes for maintaining symbionts faithfully between generations into two categories, vertical—from parent and horizontal—from environment, while correctly acknowledging that mixed modes also occur. We would like to take this approach one step further by suggesting that numerous mixed and intermediate cases, many of which are discussed in this chapter, best describe the large variety in modes of transmission which are known at present to reconstitute plant and animal holobionts. It is this continuum of modes of transmission from vertical to horizontal that makes it impractical to often place them in any specific category.

As is well known, the gastrointestinal tract is sterile in the normal fetus up to the time of birth. During normal birth, however, the baby picks up microbes from the vagina and external genitalia of the mother and any other environmental source to which it is exposed.

—Dwayne C. Savage (Savage 1977)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajslev, T. A., Andersen, C. S., Gamborg, M., et al. (2011). Childhood overweight after establishment of the gut microbiota: The role of delivery mode, pre-pregnancy weight and early administration of antibiotics. International Journal of Obesity, 35, 522–529.

    Article  CAS  PubMed  Google Scholar 

  • Almqvist, C., & Rejnö, G. (2013). Birth mode of delivery in the modern delivery ward—indication improves understanding of childhood asthma. Clinical and Experimental Allergy, 43, 264–267.

    Article  CAS  PubMed  Google Scholar 

  • Arumugam, M., Raes, J., Pelletier, E., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bakula, M. (1969). The persistence of microbial flora during postembryogenesis of Drosophila melanogaster. Journal of Invertebrate Pathology, 14, 365–374.

    Article  CAS  PubMed  Google Scholar 

  • Bennet, R., & Nord, C. E. (1987). Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants. Infection, 15, 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Bright, M., & Bulgheresi, S. (2010). A complex journey: Transmission of microbial symbionts. Nature Reviews Microbiology, 8, 218–230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, S. (1986). Management of captive koalas. In Proceedings of the Australian Koala Foundation Inc. Conference on Koala Management, Australian Koala Foundation, Queensland.

    Google Scholar 

  • Bosch, T. C. G. (2009). Hydra and the evolution of stem cells. BioEssays, 31, 478–486.

    Article  PubMed  Google Scholar 

  • Bosch, T. C. G. (2013). Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annual Review of Microbiology, 67, 499–518.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A. (2011). Microbial symbioses in the digestive tract of lower termites. In E. Rosenberg & U. Gophna (Eds.), Beneficial microorganisms in multicellular life forms (pp. 3–25). Heidelberg: Springer.

    Google Scholar 

  • Buss, L. W. (1987). The evolution of individuality. Princeton: Princeton University Press.

    Google Scholar 

  • Ceh, J., van Keulen, M., David, G., & Bourne, D. G. (2013). Intergenerational transfer of specific bacteria in corals and possible implications for offspring fitness. Microbial Ecology, 65, 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, S., Almeida, R. P. P., & Lindow, S. (2008). Living in two worlds: The plant and insect lifestyles of Xylella fastidiosa. Annual review of Phytopathology, 46, 243–271.

    Article  CAS  PubMed  Google Scholar 

  • Collado, M. C., Isolauri, E., Laitinen, K., & Salminen, S. (2010). Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. American Journal of Clinical Nutrition, 92, 1023–1030.

    Article  CAS  PubMed  Google Scholar 

  • Crowell-Davis, S., & Caudle, A. (1989). Coprophagy by foals: Recognition of maternal feces. Applied Animal Behaviour Science, 24, 267–272.

    Article  Google Scholar 

  • Dehority, B. A. (2003). Rumen Microbiology. Nottingham: Nottingham University Press.

    Google Scholar 

  • DeLuca, S. Z., & O’Farrell, P. H. (2012). Barriers to male transmission of mitochondrial DNA in sperm development. Developmental Cell, 22, 660–668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dominguez-Bello, M. G., & Blaser, M. J. (2011). The human microbiota as a marker for migrations of individuals and populations. Annual Review of Anthropology, 40, 451–474.

    Article  Google Scholar 

  • Dominguez-Bello, M. G., Costellob, E. K., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences (USA), 107, 11971–11975.

    Article  Google Scholar 

  • Ellis, J. R., Bentley, K. E., & McCauley, D. E. (2008). Detection of rare paternal chloroplast inheritance in controlled crosses of the endangered sunflower Helianthus verticillatus. Heredity, 100, 574–580.

    Article  CAS  PubMed  Google Scholar 

  • Engel, P., Martinson, V. G., & Moran, N. A. (2012). Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences (USA), 109, 11002–11007.

    Article  CAS  Google Scholar 

  • Ereskovsky, A. V., Gonobobleva, E., & Vishnyakov, A. (2006). Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston. Marine Biology, 146, 869–875.

    Article  Google Scholar 

  • Fahlgren, C., Hagstrom, A., Nilsson, D., et al. (2010). Annual variations in the diversity, viability, and origin of airborne bacteria. Applied and Environment Microbiology, 76, 3015–3025.

    Article  CAS  Google Scholar 

  • Faith, J. J., Guruge, J. L., Charbonneau, M., et al. (2013). The long-term stability of the human gut microbiota. Science, 341, 1237439. doi:10.1126/science.1237439.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fallani, M., Young, D., Scott, J., et al. (2010). Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond delivery mode, breast-feeding, and antibiotics. Journal of Pediatric Gastroenterology and Nutrition, 51, 77–84.

    Article  PubMed  Google Scholar 

  • Fell, P. E. (1993). Reproductive biology of invertebrates. Asexual propagation and reproductive strategies. In K. G. Adyodi & R. G. Adyodi (Eds.), Porifera (pp. 1–44). Chichester: John Wiley & Sons.

    Google Scholar 

  • Fernandez, L., Langa, S., Martin, V., et al. (2013). The human milk microbiota: Origin and potential roles in health and disease. Pharmacological Research, 69, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Fraune, S., & Bosch, T. C. G. (2007). Long-term maintenance of species- specific bacterial microbiota in the basal metazoan Hydra. Proceedings of the National Academy of Sciences (USA), 104, 13146–13151.

    Article  CAS  Google Scholar 

  • Fuller, M. T., & Spradling, A. C. (2007). Male and female Drosophila germline stem cells: Two versions of immortality. Science, 316, 402–404.

    Article  CAS  PubMed  Google Scholar 

  • Funkhouser, L. J., & Bordenstein, S. R. (2013). Mom knows best: The universality of maternal microbial transmission. PLoS, 11, e1001631.

    Article  CAS  Google Scholar 

  • Gosalbes, M. J., Llop, S., Valles, Y., et al. (2013). Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clinical and Experimental Allergy, 43, 198–211.

    Article  CAS  PubMed  Google Scholar 

  • Gough, E., Shaikh, H., & Manges, A. (2011). Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clinical Infectious Diseases, 53, 994–1002.

    Article  PubMed  Google Scholar 

  • Gyllensten, U., Wharton, D., Josefsson, A., et al. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature, 352, 255–257.

    Article  CAS  PubMed  Google Scholar 

  • Harada, Y., & Iwasa, Y. (1994). Lattice population dynamics for plants with dispersing seeds and vegetative propogation. Researches on Population Ecology, 36, 237–249.

    Article  Google Scholar 

  • Heath, K. D., & Tiffin, P. (2008). Stabilizing mechanisms in a legume-Rhizobium mutualism. Evolution, 63, 652–662.

    Article  PubMed  Google Scholar 

  • Hill, B. L., & Purcell, A. H. (1995). Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology, 85, 209–212.

    Article  Google Scholar 

  • Huh, S. Y., Rifas-Shiman, L., Zera, C. A., et al. (2012). Delivery by caesarean section and risk of obesity in preschool age children: A prospective cohort study. Archives of Disease in Childhood,. doi:10.1136/archdischild-2011-301141.

    PubMed Central  PubMed  Google Scholar 

  • Jami, E., & Mizrahi, I. (2012). Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE, 7(3), e33306. doi:10.1371/journal.pone.0033306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jimenez, E., Fernandez, L., Marin, M. L., et al. (2005). Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Current Microbiology, 51, 270–274.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez, E., Marín, M. L., Martín, R., et al. (2008). Is meconium from healthy newborns actually sterile? Research in Microbiology, 159, 187–193.

    Article  PubMed  Google Scholar 

  • Jones, K. M., Kobayashi, H., Davies, B. W., et al. (2007). How rhizobial symbionts invade plants: The Sinorhizobium medicago model. Nature Reviews Microbiology, 5, 619–633.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jost, T., Lacroix, C., Braesier, C., & Chassard, C. (2013). Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. British Journal of Nutrition, 14, 1–10.

    Google Scholar 

  • Koch, H., & Schmid-Hempel, P. (2011). Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences (USA), 108, 19288–19292.

    Article  CAS  Google Scholar 

  • Kovacs, M., Szendro, Z., Milisits, G., et al. (2006). Effect of nursing methods and feces consumption on the development of bacteroides, lactobacillus and coliform flora in the caecum of the newborn rabbits. Reproduction, Nutrition, Development, 46, 205–210.

    Article  PubMed  Google Scholar 

  • Linaje, R., Coloma, M. D., Perez-Martınez, G., et al. (2004). Characterization of faecal enterococci from rabbits for the selection of probiotic strains. Journal of Applied Microbiology, 96, 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Lombardo, M. P. (2008). Access to mutualistic endosymbiotic microbes: An underappreciated benefit of group living. Behavioral Ecology and Sociobiology, 62, 479–497.

    Article  Google Scholar 

  • Mackie, R. I., Sghir, A., & Gaskins, H. R. (1999). Developmental microbial ecology of the neonatal gastrointestinal tract. American Journal of Clinical Nutrition, 69, 1035S–1045S.

    CAS  PubMed  Google Scholar 

  • Martín, R., Langa, Reviriego, S. C., et al. (2004). The commensal microflora of human milk: New perspectives for food bacteriotherapy and probiotics. Trends in Food Science and Technology, 15, 121–127.

    Article  Google Scholar 

  • Mofenson, L. M. (2010). Antiretroviral drugs to prevent breastfeeding HIV transmission. Antivir Ther, 15, 537–553.

    Article  PubMed  Google Scholar 

  • Moles, L., Gómez, M., Heilig, H., et al. (2013). Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS ONE, 8(6), e66986. doi:10.1371/journal.pone.0066986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller, S., Saunier, K., Hanisch, C., et al. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender and country: A cross-sectional study. Applied and Environment Microbiology, 72, 1027–1033.

    Article  CAS  Google Scholar 

  • Nalepa, C. A. (2011). Altricial development in wood-feeding cockroaches: The key antecedent of termite socociality. In D. E. Bignell, Y. Roisin, & N. Lo (Eds.), Biology of termites: A modern synthesis (pp. 69–95). Dordrecht: Springer.

    Google Scholar 

  • Nyholm, S. V., & McFall-Ngai, M. (2004). The winnowing: Establishing the squid–vibrio symbiosis. Nature Reviews Microbiology, 2, 632–642.

    Article  CAS  PubMed  Google Scholar 

  • Nyholm, S. V., Stewart, J. J., Ruby, E. G., et al. (2008). Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environmental Microbiology, 11, 483–493.

    Article  Google Scholar 

  • Ochman, H., Worobey, M., Kuo, C. H., et al. (2010). Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biology, 8(11), e1000546. doi:10.1371/journal.pbio.1000546.

    Article  PubMed Central  PubMed  Google Scholar 

  • Osawa, R., Blanshard, W. H., & Ocallaghan, P. G. (1993). Microbiological studies of the intestinal microflora of the koala, Phascolarctos cinereus. II. Pap, a special maternal feces consumed by juvenile koalas. Australian Journal of Zoology, 41, 611–620.

    Article  Google Scholar 

  • Penders, J., Thijs, C., Vink, C., et al. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics, 118, 511–521.

    Article  PubMed  Google Scholar 

  • Phillips, M. L. (2009). Gut reaction: Environmental effects on the human microbiota. Environmental Health Perspectives, 117, A198–A205.

    PubMed Central  PubMed  Google Scholar 

  • Purcell, A. H., Finlay, A. H., & McLean, D. L. (1979). Pierce’s disease bacterium: Mechanism of transmission by leafhopper vectors. Science, 206, 839–841.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, A. H., & Hopkins, D. L. (1996). Fastidious xylem-limited bacterial plant pathogens. Annual Review of Phytopathology, 34, 131–151.

    Article  CAS  PubMed  Google Scholar 

  • Rautava, S., Collado, M. C., Salminen, S., & Isolauri, E. (2012). Probiotics modulate host-microbe interaction in the placenta and fetal gut: A randomized, double-blind, placebo-controlled trial. Neonatology, 102, 178–184.

    Article  PubMed  Google Scholar 

  • Rohwer, F., Seguritan, V., Azam, F., et al. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1–10.

    Article  Google Scholar 

  • Russell, J. B., & Rychlik, J. L. (2001). Factors that alter rumen ecology. Science, 292, 1119–1122.

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Rodriguez, T. M., Narganes-Storde, Y. M., Chanlatte, L., et al. (2013). Microbial communities in pre-Columbian coprolites. PLoS ONE, 8(6), e65191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satokari, R., Gronroos, T., Laitinen, K., et al. (2009). Bifidobacterium and Lactobacillus DNA in the human placenta. Letters in Applied Microbiology, 48, 8–12.

    Article  CAS  PubMed  Google Scholar 

  • Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Reviews in Microbiology, 31, 107–133.

    Article  CAS  Google Scholar 

  • Schmitt, S., Tsai, P., Bell, J., et al. (2012). Assessing the complex sponge microbiota: Core, variable and species-specific bacterial communities in marine sponges. ISME Journal, 6, 564–576.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, A., & Vissing, J. (2002). Paternal inheritance of mitochondrial DNA. New England Journal of Medicine, 347, 576–580.

    Article  PubMed  Google Scholar 

  • Sharon, G., Segal, D., Ringo, J. M., et al. (2010). Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proceedings of the National Academy of Sciences (USA), 107, 20051–20056.

    Article  CAS  Google Scholar 

  • Sharp, K. H., Distel, D., & Paul, V. J. (2011). Diversity and dynamic of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME Journal, 6, 790–801.

    Article  PubMed  Google Scholar 

  • Sharp, K. H., Ritchie, K. B., Schupp, P. J., et al. (2010). Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS ONE, 5(5), e10898. doi:10.1371/journal.pone.0010898.

    Article  PubMed Central  PubMed  Google Scholar 

  • Steel, J. H., Malatos, S., Kennea, N., et al. (2005). Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatric Research, 57, 404–411.

    Article  PubMed  Google Scholar 

  • Stougaard, J. (2000). Regulators and regulation of legume root nodule development. Plant Physiology, 124, 531–540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stow, A., & Beattie, A. (2008). Chemical and genetic defenses against disease in insect societies. Brain, Behavior, and Immunity, 22, 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  • Thavagnanam, S., Fleming, J., Bromley, A., et al. (2008). A meta-analysis of the association between Caesarean section and childhood asthma. Clinical and Experimental Allergy, 38, 629–633.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P. J., Hamady, M., Yatsunenko, T., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457, 480–484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Dongen, W. F. D., White, J., Brand, H. B., et al. (2013). Age-related differences in the cloacal microbiota of wild bird species. BMC Ecology, 13, 11.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Nood, E., Vrieze, A., Nieuwdorp, M., et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. The New England Journal of Medicine, 368, 407–415.

    Google Scholar 

  • Wang, B., & Qui, Y. L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, D. M. (2001). Mycorrhizal evolution. Trends in Ecology and Evolution, 16, 64–65.

    Article  PubMed  Google Scholar 

  • Wilkinson, T. L., Fukatsu, T., & Ishikawa, H. (2003). Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Structure and Development, 32, 241–245.

    Article  CAS  Google Scholar 

  • Winston, J. E. (1983). Free content patterns of growth, reproduction and mortality in Bryozoans from the Ross Sea, Antarctica. Bulletin of Marine Science, 33, 688–702.

    Google Scholar 

  • Yamaoka, Y. (2009). Helicobacter pylori typing as a tool for tracking human migration. Clinical Microbiology and Infection, 9, 829–834.

    Article  Google Scholar 

  • Yildirim, S., Yeoman, C. J., Sipos, M., et al. (2010). Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE, 5, e13963.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zoetendal, E. G., Akkermans, A. D. L., van Vliet, W. M., et al. (2001). A host genotype affects the bacterial community in the human gastrointestinal tract. Microbial Ecology in Health and Disease, 13, 129–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, E., Zilber-Rosenberg, I. (2013). Microbiotas are Transmitted Between Holobiont Generations. In: The Hologenome Concept: Human, Animal and Plant Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-319-04241-1_4

Download citation

Publish with us

Policies and ethics