Skip to main content

Abundance and Diversity of Microbiota

  • Chapter
  • First Online:
The Hologenome Concept: Human, Animal and Plant Microbiota

Abstract

There are no natural germ-free animals or plants. All are holobionts and contain associated microorganisms, including viruses. Moreover, as we have shown in the previous chapter, eukaryotic organisms have evolved together with microorganisms from the beginning. The hologenome concept emphasizes the importance not only of the intracellular symbionts but also and especially of the cooperation that takes place between all of the diverse and dynamic extracellular microbial symbionts that is present in all the animal and plant holobionts.

Mutually beneficial relationships between microbes and animals are a pervasive feature of life on our microbe-dominated planet. We are no exception: the total number of microbes that colonize our body surfaces exceeds our total number of somatic and germ cells by 10-fold, and the total number of microbial genes in our aggregate microbial communities is >100-fold greater than the number of genes in our human genome.

—Jeffrey Gordon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801.

    CAS  PubMed  Google Scholar 

  • Allen, M. F. (1991). The ecology of mycorrhizae. Cambridge: Cambridge University Press.

    Google Scholar 

  • Amato, K. R., Yeoman, C. J., Kent, A., et al. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME Journal, 7, 1344–1353.

    CAS  PubMed  Google Scholar 

  • Berendsen, R. L., Pietersel, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 479–486.

    Google Scholar 

  • Berg, R. (1996). The indigenous gastrointestinal microflora. Trends in Microbiology, 4, 430–435.

    CAS  PubMed  Google Scholar 

  • Blaser, M. J., Dominguez-Bello, M. G., Contreas, M., et al. (2013). Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME Journal, 7, 85–95.

    CAS  PubMed  Google Scholar 

  • Bosch, T. C. (2012). Understanding complex host-microbe interactions in Hydra. Gut Microbes, 3, 345–351.

    PubMed  Google Scholar 

  • Breitbart, M., Hewson, I., Felts, B., et al. (2003). Metagenomic analyses of an uncultured viral community from human feces. Journal of Bacteriology, 185, 6220–6223.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks, S. P. J., McAllister, M., Sandoz, M., et al. (2003). Culture-independent phylogenetic analysis of the faecal flora of the rat. Canadian Journal of Microbiology, 49, 589–601.

    CAS  PubMed  Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., & Spaepen, S. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.

    CAS  PubMed  Google Scholar 

  • Burke, C., Thomas, T., Lewis, M., et al. (2011). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME Journal, 5, 590–600.

    CAS  PubMed  Google Scholar 

  • Cankar, K., Kraigher, H., & Ravnikar, M. (2005). Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters, 244, 341–345.

    CAS  PubMed  Google Scholar 

  • Claesson, M. J., Jeffery, I. B., Conde, S., et al. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488, 178–184.

    CAS  PubMed  Google Scholar 

  • Costello, E. K., Gordon, J. I., Secor, S. M., et al. (2010). Postprandial remodeling of the gut microbiota in Burmese pythons. ISME Journal, 4, 1375–1385.

    CAS  PubMed  Google Scholar 

  • Cox, C. R., & Gilmore, M. S. (2007). Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infection and Immunity, 75, 1565–1576.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crielaard, W., Zaura, E., Schuller, A. A., et al. (2011). Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics, 4, 22. doi:10.1186/1755-8794-4-22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Filippo, C., Cavalieria, D., Di Paola, M., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences (USA), 107, 14691–14696.

    Google Scholar 

  • Delmotte, N., Knief, C., Chaffron, S., et al. (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences (USA), 106, 16428–16433.

    CAS  Google Scholar 

  • Deplancke, B., & Gaskins, H. R. (2001). Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. American Journal of Clinical Nutrition, 73, 1131S–1141S.

    CAS  PubMed  Google Scholar 

  • Dethlefsen, L., Huse, S., Sogin, M. L., et al. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology, 6(11), e280. doi:10.1371/journal.pbio.0060280.

    PubMed Central  PubMed  Google Scholar 

  • Dominguez-Bello, M. G., Costellob, E. K., Contrerasc, M., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences (USA), 107, 11971–11975.

    Google Scholar 

  • Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E., et al. (2011). Development of the gastrointestinal microbiota and insights from high through-put sequencing. Gastroenterology, 140, 1713–1719.

    CAS  PubMed  Google Scholar 

  • Dunbar, J., Barns, S. M., Ticknor, L. O., et al. (2002). Empirical and theoretical bacterial diversity in four Arizona soils. Applied and Environment Microbiology, 68, 3035–3045.

    CAS  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., et al. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

    PubMed Central  PubMed  Google Scholar 

  • Eller, C., Crabill, M. R., & Bryant, M. P. (1971). Anaerobic roll tube media for nonselective enumeration and isolation of bacteria in human feces. Applied Microbiology, 22, 522–529.

    CAS  PubMed  Google Scholar 

  • Faith, J. J., Guruge, J. L., Charbonneau, M., et al. (2013). The long-term stability of the human gut microbiota. Science, 341, 1237439. doi:10.1126/science.1237439.

    PubMed Central  PubMed  Google Scholar 

  • Frank, D. N., & Pace, N. R. (2008). Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology, 24, 4–10.

    CAS  PubMed  Google Scholar 

  • Franks, A. H., Harmsen, H. J. H., Raangs, G. C., et al. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology, 66, 3336–3345.

    Google Scholar 

  • Franzenburg, S., Fraune, S., Altrock, P. M., et al. (2013). Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME Journal online publication, January 24, 2013. doi:10.1038/ismej.2012.156.

  • Fraune, S., & Bosch, T. C. G. (2007). Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proceedings of the National Academy of Sciences (USA), 104, 13146–13151.

    CAS  Google Scholar 

  • Gates, R. D., & Ainsworth, T. D. (2011). The nature and taxonomic composition of coral symbiomes as drivers of performance limits in scleractinian corals. Journal of Experimental Marine Biology and Ecology, 408, 94–101.

    Google Scholar 

  • Gottlieb, Y., Ghanim, M., Gueguen, G., et al. (2008). Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. FASEB Journal, 22, 2591–2599.

    CAS  PubMed  Google Scholar 

  • Grice, E. A., Kong, H. H., & Conlan, S. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324, 1190–1192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grub, J. A., & Dehority, B. A. (1976). Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods. Applied and Environment Microbiology, 31, 262–267.

    Google Scholar 

  • Hamad, I., Sokhna, C., Raoult, D., & Bittar, F. (2012). Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS ONE, 7, e40888.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamady, M., & Knight, R. (2009). Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 19, 1141–1152.

    CAS  PubMed  Google Scholar 

  • He, S., Ivanova, N., Kirton, E., et al. (2013). Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE, 8(4), e61126.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hein, E., Rose, K., Van’tslot, G., et al. (2008). Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). Journal of Agriculture and Food Chemistry, 56, 2281–2290.

    CAS  Google Scholar 

  • Hentschel, U., Usher, K. M., & Taylor, M. W. (2006). Marine sponges as microbial fermenters. FEMS Microbiology Ecology, 55, 167–177.

    CAS  PubMed  Google Scholar 

  • Hoffmann, C., Dollive, S., Grunberg, S., et al. (2013). Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE, 8(6), e66019.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hongoh, Y., Deevong, P., Inoue, T., et al. (2005). Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Applied and Environment Microbiology, 71, 6590–6599.

    CAS  Google Scholar 

  • Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.

    Google Scholar 

  • Huttenhower, C., Gevers, D., Knight, R., et al. (2012). The Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.

    CAS  Google Scholar 

  • Ikeda, S., Okubo, T., Anda, M., et al. (2010). Community- and genome-based views of plant-associated bacteria: Plant–bacterial interactions in soybean and rice. Plant and Cell Physiology, 51, 1398–1410.

    CAS  PubMed  Google Scholar 

  • Jami, E., & Mizrahi, I. (2012). Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE, 7(3), e33306.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jardillier, L., Bettarel, Y., Richardot, M., et al. (2005). Effects of viruses and predators on prokaryotic community composition. Microbial Ecology, 50, 557–569.

    PubMed  Google Scholar 

  • Jenkinson, B. H. F. (2011). Beyond the oral microbiome. Environmental Microbiology, 13, 3077–3087.

    PubMed  Google Scholar 

  • Kampfer, P., & Glaeser, S. P. (2013). Characterization and identification of prokaryotes. In E. Rosenberg, et al. (Eds.), The prokaryotes (4th ed., vol. 1, pp. 121–141). New York: Springer.

    Google Scholar 

  • Kim, M., Morrison, M., & Yu, Z. (2011). Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiology Ecology, 76, 49–63.

    CAS  PubMed  Google Scholar 

  • Koltai, H. (2013). Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Annals of Botany, 112, 409–415.

    CAS  PubMed  Google Scholar 

  • Konstantinidis, K. T., & Stackebrandt, E. (2013). Defining taxonomic ranks. In E. Rosenberg, et al. (eds.), The prokaryotes (vol. 1, Chap. 9). New York: Springer.

    Google Scholar 

  • Koopman, M. M., Fuselier, D. M., Hird, S., et al. (2010). The carnivorous pale pitcher plant harbors diverse, distinct and time-dependent bacterial communities. Applied and Environment Microbiology, 76, 1851–1860.

    CAS  Google Scholar 

  • Koren, O., & Rosenberg, E. (2006). Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Applied and Environment Microbiology, 72, 5254–5259.

    CAS  Google Scholar 

  • Kuz’mina, V. V., & Pervushina, K. A. (2003). The role of proteinases of the enteral microbiota in temperature adaptation of fish and helminthes. Doklady Biological Sciences, 391, 326–328.

    PubMed  Google Scholar 

  • Larson, G., Falk, P., & Hoskins, L. C. (1988). Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. Journal of Biological Chemistry, 263, 10790–10798.

    CAS  PubMed  Google Scholar 

  • Laudien, I., Gonzalez, J. L., Gorski, J. L., et al. (1985). Variation among human 28S ribosomal RNA genes. Proceedings of the National Academy of Sciences (USA), 82, 7666–7670.

    Google Scholar 

  • Levsky, J. M., & Singer, R. H. (2003). Fluorescence in situ hybridization: past, present and future. Journal of Cell Science, 116, 2833–2838.

    CAS  PubMed  Google Scholar 

  • Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). An extended view of ourselves: Ecological and evolutionary forces that shape microbial diversity and genome content in the human intestine. Cell, 124, 837–848.

    CAS  PubMed  Google Scholar 

  • Lindow, S. E., & Brand, M. T. (2003). Microbiology of the phyllosphere. Applied and Environment Microbiology, 69, 1875–1883.

    CAS  Google Scholar 

  • Lu, Y., Rosencrantz, D., Liesack, W., et al. (2006). Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environmental Microbiology, 8, 1351–1360.

    CAS  PubMed  Google Scholar 

  • Mariat, D., Firmesse, O., Levenez, F., et al. (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 9, 123. doi:10.1186/1471-2180-9-123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markle, J. G. M., Frank, D. N., Mortin-Toth, S., et al. (2013). Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 339, 1084–1088.

    CAS  PubMed  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Mendes, R., Kruijt, M., Bruijn, I., et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.

    CAS  PubMed  Google Scholar 

  • Mercier, J., & Lindow, S. E. (2000). Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Applied and Environment Microbiology, 66, 369–374.

    CAS  Google Scholar 

  • Middelboe, M., Hagström, Å., Blackburn, N., et al. (2001). Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microbial Ecology, 42, 395–406.

    CAS  PubMed  Google Scholar 

  • Mills, S., Shanahan, F., Stanton, C., et al. (2012). Movers and shakers: Influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes, 4, 1–13.

    Google Scholar 

  • Moore, W. E., & Holdeman, L. V. (1974). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Applied Microbiology, 27, 961–979.

    Google Scholar 

  • Mueller, S., Saunier, K., Hanisch, C., et al. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Applied and Environment Microbiology, 72, 1027–1033.

    CAS  Google Scholar 

  • Nam, Y. D., Jung, M. J., Roh, S. W., et al. (2011). Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS ONE 6(7). doi:10.1371/journal.pone.0022109.

  • Nettelbladt, C. G., Katouli, M., Volpe, A., et al. (1997). Starvation increases the number of coliform bacteria in the caecum and induces bacterial adherence to caecal epithelium in rats. European Journal of Surgery, 163, 135–142.

    CAS  PubMed  Google Scholar 

  • Ochman, H., Worobey, M., Kuo, C., et al. (2010). Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biology, 8, e1000546.

    PubMed Central  PubMed  Google Scholar 

  • Ohkuma, M. (2008). Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends in Microbiology, 7, 345–352.

    Google Scholar 

  • Oliver, J. D. (1993). Formation of viable but nonculturable cells. In S. Kjelleberg (Ed.), Starvation in Bacteria (pp. 239–272). New York: Plenum Press.

    Google Scholar 

  • Olsen, G. J., Lane, D. J., Giovannoni, S. J., et al. (1986). Microbial ecology and evolution: A ribosomal RNA approach. Annual Review of Microbiology, 40, 337–365.

    CAS  PubMed  Google Scholar 

  • Palmer, C., Bik, E. M., DiGiulio, D. B., et al. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177.

    PubMed Central  PubMed  Google Scholar 

  • Polz, M. F., & Cavanaugh, C. M. (1998). Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 64, 3724–3730.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin, J., Lil, R., Raes, J., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redford, A. J., Bowers, R. M., Knight, R., et al. (2010). The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environmental Microbiology, 12, 2885–2893.

    PubMed Central  PubMed  Google Scholar 

  • Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. Journal of Experimental Biology, 59, 1109–1114.

    CAS  Google Scholar 

  • Roeselers, G., Mittge, E. K., Stephens, Z. W., et al. (2011). Evidence for a core gut microbiota in the zebrafish. ISME Journal, 5, 1595–1608.

    CAS  PubMed  Google Scholar 

  • Rosenberg, E., Koren, O., Reshef, L., et al. (2007). The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5, 355–362.

    CAS  PubMed  Google Scholar 

  • Samuel, B. S., Hansen, E. E., Manchester, J. K., et al. (2007). Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the National Academy of Sciences (USA), 104, 10643–10648.

    CAS  Google Scholar 

  • Schloss, P. D., & Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environment Microbiology, 71, 1501–1506.

    CAS  Google Scholar 

  • Schmidt, T. M., Delong, E. F., & Pace, N. R. (1991). Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. Journal of Bacteriology, 173, 4371–4378.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitt, S., Tsai, P., Bell, J., et al. (2012). Assessing the complex sponge microbiota: Core, variable and species-specific bacterial communities in marine sponges. ISME Journal, 6, 564–576.

    CAS  PubMed  Google Scholar 

  • Schuler, A., Scwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 105, 1414–1421.

    Google Scholar 

  • Sekirov, I., Russell, S. L., Antunes, L. C. M., et al. (2010). Gut microbiota in health and disease. Physiological Reviews, 90, 859–904.

    CAS  PubMed  Google Scholar 

  • Sessitsch, A., Hardoim, P., Doring, J., et al. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25, 28–36.

    CAS  PubMed  Google Scholar 

  • Smati, M., Clermont, O., Le Gal, F., et al. (2013). Real-time PCR for quantitative analysis of human commensal Escherichia coli S populations reveals a high frequency of subdominant phylogroups. Applied and Environment Microbiology, 79, 5005–5012.

    CAS  Google Scholar 

  • Smith, S. E., & Smith, F. A. (1990). Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist, 114, 1–38.

    CAS  Google Scholar 

  • Sun, L., Qiu, F., Zhang, X., et al. (2007). Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology, 55, 415–424.

    PubMed  Google Scholar 

  • Sunagawa, S., DeSantis, T. Z., Piceno, Y. M., et al. (2009). Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME Journal, 3, 512–521.

    CAS  PubMed  Google Scholar 

  • Sunagawa, S., Woodley, C. M., & Medina, M. (2010). Threatened corals provide underexplored microbial habitats. PLoS ONE, 5(3), e9554. doi:10.1371.

    PubMed Central  PubMed  Google Scholar 

  • Sundset, M. A., Praesteng, K. E., Cann, I. K., et al. (2007). Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecology, 54, 424–438.

    PubMed  Google Scholar 

  • Sylvia, D., Fuhrmann, J., Hartel, P., et al. (2005). Principles and applications of soil microbiology. New Jersey: Pearson Education Inc.

    Google Scholar 

  • Tang, X., Freitak, D., Vogel, H., et al. (2012). Complexity and variability of gut commensal microbiota in Polyphagous lepidopteran larvae. PLoS ONE, 7(7), e36978. doi:10.1371/journal.pone.0036978.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thingstad, T. F., & Lignell, R. (1997). Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquatic Microbial Ecology, 13, 19–27.

    Google Scholar 

  • Uroz, S., Buée, M., Murat, C., et al. (2010). Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Reports, 2, 281–288.

    CAS  Google Scholar 

  • van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.

    PubMed  Google Scholar 

  • van Houte, J., & Gibbons, R. J. (1966). Studies of the cultivable flora of normal human feces. Antonie van Leeuwenhoek, 32, 212–222.

    PubMed  Google Scholar 

  • von Wintzingerode, F., Gobel, U. B., & Stackebrandt, E. (1997). Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 21, 213–229.

    Google Scholar 

  • Webster, N. S., Taylor, M. W., Behnam, F., et al. (2010). Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environmental Microbiology, 12, 2070–2082.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weeks, A. R., & Hoffmann, A. A. (2008). Frequency-dependent selection maintains clonal diversity in an asexual organism. Proceedings of the National Academy of Sciences (USA), 105, 17872–17877.

    CAS  Google Scholar 

  • Weickert, M. O., Arafat, A. M., Blaut, M., et al. (2011). Changes in dominant groups of the gut microbiota do not explain cereal-fiber induced improvement of whole-body insulin sensitivity. Nutrition and Metabolism, 8, 90.

    CAS  PubMed  Google Scholar 

  • Weitz, J. S., Hartman, H., & Levin, S. A. (2005). Coevolutionary arms races between bacteria and bacteriophage. Proceedings of the National Academy of Sciences (USA), 102, 9535–9540.

    CAS  Google Scholar 

  • Whipps, J. M., Hand, P., Pink, D., et al. (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology, 105, 1744–1755.

    CAS  PubMed  Google Scholar 

  • Winter, C., Bouvier, T., Weinbauer, M. G., et al. (2010). Trade-offs between competition and defense specialists among unicellular planktonic organisms: The “Killing the Winner” hypothesis revisited. Microbiology and Molecular Biology Reviews, 74, 42–57.

    CAS  PubMed  Google Scholar 

  • Wong, A. C., Chaston, J. M., & Douglas, A. E. (2013). The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. International Society for Microbial Ecology Journal, 10, 1922–1932.

    Google Scholar 

  • Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences (USA), 96, 1463–1468.

    CAS  Google Scholar 

  • Yildirim, S., Yeoman, C. J., Sipos, M., et al. (2010). Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE, 5, e13963.

    PubMed Central  PubMed  Google Scholar 

  • Zarco, M. F., Vess, T. J., & Ginsburg, G. S. (2012). The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Diseases, 18, 109–120.

    CAS  PubMed  Google Scholar 

  • Zhu, X., & Joerger, R. D. (2003). Composition of microbiota in content and mucus from cecae of broiler chickens as measured by fluorescent in situ hybridization with group-specific, 16S rRNA-targeted oligonucleotide probes. Poultry Science, 82, 1242–1249.

    CAS  PubMed  Google Scholar 

  • Zhu, X. Y., Zhong, T., Pandya, Y., et al. (2002). 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environment Microbiology, 68, 124–137.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, E., Zilber-Rosenberg, I. (2013). Abundance and Diversity of Microbiota. In: The Hologenome Concept: Human, Animal and Plant Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-319-04241-1_3

Download citation

Publish with us

Policies and ethics