Skip to main content

Abstract

We are in the midst of a paradigm change in biology: animals and plants can no longer be considered individuals, but rather holobionts, each of which is an independent biological entity and an independent level of selection in evolution.

As the area of light increases, so does the circumference of darkness.

—Albert Einstein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams, G. D., & Bishop, J. E. (1966). Effect of normal microbial flora on the resistance of the small interstine to infection. Journal of Bacteriology, 92, 1604–1608.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abrams, G. D., & Bishop, J. E. (1967). Effect of normal microbial flora on gastrointestinal motility. Proceedings of the Society for Experimental Biology and Medicine, 126, 301–304.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, L. O., Nielsen, H. V., & Stensvold, C. R. (2013). Waiting for the human intestinal Eukaryotome. The ISME Journal, 7, 1253–1255.

    Article  PubMed  Google Scholar 

  • Bjorksten, B. (2009). The hygiene hypothesis: do we still believe in it? Nestle Nutr Workshop Ser Pediatr Program, 64, 11–18.

    Google Scholar 

  • Bosch, T. C. G. (2013). Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annual Review of Microbiology, 67, 499–518.

    Google Scholar 

  • Chan, J. Z., Halachev, M. R., Loman, N. J., et al. (2012). Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiology, 12, 302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davies, P. S. (1980). Respiration in some Atlantic reef corals in relation to vertical distribution and growth form. Biological Bulletin, 158, 187–194.

    Article  Google Scholar 

  • Dimitrov, D. V. (2011). The human gutome: nutrigenomics of the host-microbiome interteractions. OMICS: A Journal of Integrative Biology, 15, 419–430.

    Article  CAS  Google Scholar 

  • Ekker, S. C. (2008). Zinc finger-based knockout punches for zebrafish genes. Zebrafish, 5, 1121–1123.

    Google Scholar 

  • Faith, J. J., McNulty, N. P., Federico, E., Rey, F. E., & Gordon, J. I. (2011). Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science, 333, 101–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finegold, S. M., Dowd, S. E., Gontcharova, V., et al. (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 16, 444–453.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G. R., Willems, A., Reading, S., & Collins, M. (1996). Fermentation of non-digestible oligosaccharides by human colonic bacteria. Proceedings of the Nutrition Society, 55, 899–909.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J. (1993). Planet of the Bacteria (Vol. 119, p. 344). Washington: Washington Post Horizon.

    Google Scholar 

  • Hansen, C. H., Nielsen, D. S., Kverka, M., et al. (2012). Patterns of early gut colonization shape future immune responses of the host. PLoS One, 7(3), e34043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hehemann, J. H., Correc, G., Barbeyron, T., et al. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464, 908–914.

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine Freshwater Research, 50, 839–866.

    Article  Google Scholar 

  • Hofer, U. (2013). Variation in the gut virome. Nature Reviews Microbiology, 11, 596–597.

    CAS  PubMed  Google Scholar 

  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336, 1268–1273.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 223–329.

    Article  Google Scholar 

  • Jonkers, D., Penders, J., Masclee, A., & Pierik, M. (2012). Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs, 72, 803–823.

    Article  PubMed  Google Scholar 

  • Kang, J. X. (2013). Gut microbiota and personalized nutrition. Journal Nutrigenetics and Nutrigenomics, 6, 1–2.

    Article  CAS  Google Scholar 

  • Khoruts, A., & Sadowsky, M. J. (2011). Therapeutic transplantation of the distal gut microbiota. Mucosal Immunology, 4, 4–7.

    Article  CAS  PubMed  Google Scholar 

  • Kuz’mina, V. V., & Pervushina, K. A. (2003). The role of proteinases of the enteral microbiota in temperature adaptation of fish and helminthes. Doklady Biological Sciences, 391, 2326–2328.

    Google Scholar 

  • Lathrop, S. K., Bloom, S. M., Rao, K., et al. (2011). Peripheral education of the immune system by colonic commensal microbiota. Nature, 478, 250–254.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ledford, H. (2013). US regulation misses some GM crops. Nature, 500, 389–390.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 330, 1768–1773.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis, K. D., & Burton-Feeman, B. M. (2010). The role of innovation and technology in meeting individual nutritional needs. Journal of Nutrition, 140, S26–S36.

    Article  Google Scholar 

  • Loman, N. J., Constantinidou, C., Chan, J. Z. M., et al. (2012). High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nature Reviews Microbiology, 10, 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Marcobal, A., Kashyap, P. C., Nelson, T. A., et al. (2013). A metabolomics view of how the human gut microbiota impacts the host metabolme using humanized and gnotobiotic mice. ISME Journal, 7, 1933–1943.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, E. (1970). Populations, species, and evolution. Cambridge: Harvard University Press.

    Google Scholar 

  • McLellan, C. A., Turbyville, T. J., Kithsiri, M., et al. (2007). A rhizosphere fungus enhances arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiology, 145, 174–182.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNulty, N. P., Wu, M., Erickson, A. R., et al. (2013). Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biology, 8, e1001637.

    Article  Google Scholar 

  • Moeller, A. H., Degnan, P. H., Pusey, A. E., et al. (2012). Chanpanzees and humans harbor similar gut microbiota. Nature Communications, 3, 1179.

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller, M., & Kersten, G. (2003). Nurtrigenomics: goals and strategies. Nature Reviews Genetics, 4, 315–322.

    Article  PubMed  Google Scholar 

  • Pamer, E. G. (2007). Immune responses to commensal and environmental microbes. Nature Immunology, 8, 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  • Peregrin, T. (2001). The new frontier of nutrition science: nutrigenomics. Journal of the American Dietetic Association, 101, 1306.

    Article  CAS  PubMed  Google Scholar 

  • Petrof, E. O., Gloor, G. B., Vanner, S. J., et al. (2013). Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome, 1, 3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Possemiers, S., Pinheiro, I., Verhelst, A., et al. (2013). A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach. Journal of Agriculture and Food Chemistry, 61, 9380–9392.

    Article  CAS  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Rand, A. (1961). The virtue of selfishness. New York: Penguin Books.

    Google Scholar 

  • Ray, K. (2012). Microbiota: tolerating gluten—a role for gut microbiota in celiac disease? Nature Reviews Gastroenterology and Hepatology, 9(5), 242.

    Article  PubMed  Google Scholar 

  • Reyes, A., Haynes, M., Hansonet, N., et al. (2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466, 334–338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. Journal of Experimental Biology, 59, 1109–1114.

    CAS  Google Scholar 

  • Sommer, F., & Bäckhed, F. (2013). The gut microbiota–masters of host development and physiology. Nature Reviews Microbiology, 11, 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Spath, S. (2004, August). ASM news (p. 359).

    Google Scholar 

  • Sprinz, H. D., Kundel, W., & Dammin, G. J. (1961). The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. American Journal of Pathology, 39, 681–695.

    CAS  PubMed  Google Scholar 

  • Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 44, 846–849.

    CAS  Google Scholar 

  • Staley, J. T. (2009, August). The phylogenomic species concept for bacteria and archaea. USA: Microbe magazine.

    Google Scholar 

  • Stewart, C. N. (2006). Go with the glow: fluorescent proteins to light transgenic organisms. Trends in Biotechnology, 24, 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C. D., & Williamson, M. (2012). Extinction and climate change. Nature, 482, E4–E5.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, M. A., Roemer, G. W., Donlan, C. J., et al. (2013). Ecology: Gene tweaking for conservation. Nature, 501, 485–486.

    Article  PubMed  Google Scholar 

  • Turnbaugh, P., & Gordon, J. I. (2009). The core gut microbiome, energy balance and obesity. Journal of Physiology, 587, 4153–4158.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh, P. J., Hamady, M., Yatsunenko, T., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457, 480–484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vrieze, A., Van Nood, E., Holleman, F., et al. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143, 913–916.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, G. (2005). Therapeutic insulins and their large-scale manufacture. Applied Microbiology and Biotechnology, 67, 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Watts, D. (2008). Scavenging by chimpanzees at Ngogo and the relevance of chimpanzee scavenging to early hominin behavioral ecology. Journal of Human Evolution, 54, 125–133.

    Article  PubMed  Google Scholar 

  • Wayne, L. G., Brenner, D., Colwell, R. R., et al. (1987). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic Bacteriology, 37, 463–464.

    Article  Google Scholar 

  • Welch, R. A., Burland, V., Blattner, F. R., et al. (2002). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proceedings of the National Academy of Sciences (USA), 99, 17020–17024.

    Article  CAS  Google Scholar 

  • Woese, C. R. (1994). There must be a prokaryote somewhere: microbiology’s search for itself. Microbiological Reviews, 58, 1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, W., Roy, N. C., Lee, J., et al. (2013). Bowel microbiota moderate host physiological responses to dietary konjac in weanling rats. Journal of Nutrition, 143, 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis, C., Mastranesti, P., Dhonukshe, P., et al. (2013). Unraveling root developmental programs initiated by beneficial pseudomonas bacteria. Plant Physiology, 162, 304–318.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, E., Zilber-Rosenberg, I. (2013). Epilogue. In: The Hologenome Concept: Human, Animal and Plant Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-319-04241-1_11

Download citation

Publish with us

Policies and ethics