Skip to main content

Towards Autonomous Wireless Sensors: RFID and Energy Harvesting Solutions

  • Chapter
  • First Online:
Internet of Things

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 9))

Abstract

In this chapter, an extend vision on the sensing techniques and powering on smart and autonomous RFID tags is presented. In a society leaded by the information and networking, a link is defined between our real world and a virtual scenery for all the everyday objects. The linker is a smart wireless sensor. No better definition can be done by exploiting the real meaning of the words: This is the “Internet of the things era”. The most suitable technology for the development of smart sensors is the passive RFID technology because its battery-less operation, network interoperability and wireless capability. Several challenges are faced on the design of these smart and autonomous RFID sensors: sensing techniques, structure considerations and wireless powering are the main challenges discussed in this chapter. The power autonomy is presented under harvesting techniques with special interest on the electromagnetic energy harvesting. Design criteria of electromagnetic energy harvesters are also discussed. Some examples of applications on the most common sensed parameters including physical, biomedical, automatic product tamper detection and noninvasive monitoring are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CASAGRAS, CASAGRAS EU project final report, http://www.grifs-project.eu/data/File/CASAGRAS%20FinalReport%20%282%29.pdf

  2. National Intelligence Council, Disruptive technologies global trends 2025. Six technologies with potential impacts on US interests out to 2025 (2008)

    Google Scholar 

  3. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Conctless Smart Cards, Radio-Frequency Identification and Near-Field Communication, 3rd edn. Wiley, New York (2010)

    Google Scholar 

  4. Weinstein, R.: RFID: a technical overview and its applications to the enterprise. In: IEEE Computer Society, pp. 27–33 (2005)

    Google Scholar 

  5. Preradovic S., Karmakar N.C.: Chipless RFID: bar code of the future. In: IEEE Microwave Magazine, pp. 87–97 (2010)

    Google Scholar 

  6. Ondemir, O., Ilgin, M.A., Gupta, S.M.: Optimal end-of-life management in closed-loop supply chains using RFID and sensors. IEEE Trans. Ind. Inform. 8(3), 719–728 (2012)

    Google Scholar 

  7. Roy, S., Jandhyala, V., Smith, J.R., Wetherall, D.J., Otis, B.P., Chakraborty, R., Buettner, M., Yeager, D.J., Ko, Y.C., Sample, A.P.: RFID: From supply chains to sensors nets. Proc. IEEE 98(9), 1583–1592 (2010)

    Article  Google Scholar 

  8. Liu, H., Bolic, M., Nayak, A., Stojmenovic, I.: Taxonomy and challenges of the integration of RFID and wireless sensor networks. In: IEEE Network, pp. 26–32 (2008)

    Google Scholar 

  9. Bhattacharya, R., Florkemeier, C., Sarma, S.: Towards tag antenna based sensing-An RFID displacement sensor. In: Proceedings of 2009 International Conference on RFID, pp. 95–102 (2009)

    Google Scholar 

  10. Marrocco, G., Occhiuzzi, C., Amato, F.: Sensor-oriented passive RFID. In: Book Chapter The Internet of Things, Part 4, pp. 273–282 (2010)

    Google Scholar 

  11. Delen, D., Sharda, R., Hardgrave, B.C.: The promise of RFID-based sensors in the perishables supply chain. In: IEEE Wireless Communications, pp. 82–88 (2011)

    Google Scholar 

  12. Bhattacharyya, R., Floerkemeier, C., Sarma, S., Deavours, D.: RFID tag antenna based temperature sensing in the frequency domain. In: Proceedings of 2011 IEEE International Conference on RFID, pp. 70–77 (2011)

    Google Scholar 

  13. Gao, J., Siden, J., Nilsson, H.E.: Printed electromagnetic coupler with an embedded moisture sensor for ordinary passive RFID tags. IEEE Electron Device Lett. 32(12), 1767–1769 (2011)

    Article  Google Scholar 

  14. Chang, K., Kim, Y.H., Kim, Y.J., Yoon, Y.J.: Functional antenna integrated with relative humidity sensor using synthesized polyimide for passive RFID sensing. Electron. Lett. 47(5), 7–8 (2007)

    Google Scholar 

  15. Occhiuzzi, C., Rida, A., Marrocco, G., Tentzeris, M.: RFID passive gas sensor integrating carbon nanotubes. IEEE Trans. Microwave Theory Tech. 59(10), 2674–2684 (2011)

    Article  Google Scholar 

  16. Todd, B., Phillips, M., Schultz, S.M., Hawkins, A.R., Jensen, B.D.: Low-cost RFID threshold shock sensors. IEEE Sens. J. 9(4), 464–469 (2009)

    Article  Google Scholar 

  17. Occhiuzzi, C., Cippitelli, S., Marrocco, G.: Modeling, design and experimentation of wearable RFID sensor tag. IEEE Trans. Antennas Propag. 58(8), 2490–2498 (2010)

    Article  Google Scholar 

  18. Lakafosis, V., Rida, A., Vyas, R., Yang, L., Nikolaou, S., Tentzeris, M.M.: Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags. Proc. IEEE 98(9), 1601–1609 (2010)

    Article  Google Scholar 

  19. Viikarai, V., Seppa, H.: RFID MEMs sensor concept based on intermodulation distortion. IEEE Sens. J. 9(12), 1918–1923 (2009)

    Article  Google Scholar 

  20. Capdevila, S., Jofre, L., Bolomey, J.C., Romeu, J.: RFID multiprobe impedance-based sensors. IEEE Trans. Instrum. Measur. 59(12), 3093–3101 (2010)

    Article  Google Scholar 

  21. Catarinucci, L., Colella, R., Tarricone, L.: A cost-effective UHF RFID tag for transmission of generic sensor data in wireless sensor networks. IEEE Trans. Microwave Theory Tech. 57(5), 1291–1296 (2009)

    Article  Google Scholar 

  22. Preradovic, S., Menicanin, A.: Chipless wireless sensor node. In: Proceedings of International Convention MIPRO, pp. 179–182 (2012)

    Google Scholar 

  23. Herraiz-Martinez, F.J., Paredes, F., Zamora Gonzalez, G., Martin, F., Bonache, J.: Printed magnetoinductive-wave (MIW) delay lines for chipless RFID applications. IEEE Trans. Antennas Propag. 60(11), 5075–5082 (2012)

    Google Scholar 

  24. Boaventura A., Collado A., Borges Carvalho N., Georgiadis A.: Optimum behavior. IEEE Microwave Mag. 14(2), 26–35 (2013)

    Google Scholar 

  25. Bui, N., Georgiadis, A., Miozzo, M., Rossi, M., Vilajosana, X.: SWAP Project: Beyond the state of the art in harvested energy-power wireless sensors platform design. In: Proceedings of 2011 IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, pp. 837–842 (2011)

    Google Scholar 

  26. Green, M.: Third Generation Photovoltaics, Advanced Solar Energy Conversion. Springer, Heidelberg (2006)

    Google Scholar 

  27. Bebby, S., White, N.: Energy Harvesting for Autonomus Systems. Artech House, London (2010)

    Google Scholar 

  28. Le-Wei Li, J.: Wireless power transmission: state-of-the-arts in technologies and potential applications (Invited Paper). In: Proceedings of the Asia-Pacific Microwave Conference 2011, pp. 86–89 (2011)

    Google Scholar 

  29. Brown, W.C., George, R.H., Heeman, N.I.: Microwave to dc converter, US Patent 3 434 678, March 1969

    Google Scholar 

  30. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 32(9), 1230–1242 (1984)

    Article  Google Scholar 

  31. Shinora, N.: Wireless Power Transmission for Solar Power Satellite (SPS), Internal Report. Kyoto University, Japan (2006)

    Google Scholar 

  32. Liu, L., Zhang, R., Chua, K.: Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Microwave Theory Tech. 12(1), 288–300 (2013)

    Google Scholar 

  33. Nintanavongsa, P., Muncuk, U., Richard Lewis D., Roy Chowdhury K.: Design optimization and implementation for rf energy harvesting circuits. IEEE J Emerg. Sel. Top. Circ. Syst. 2(1), 24–33 (2012)

    Google Scholar 

  34. Iannello, F., Simeone, O., Spagnolini, U.: Energy Management Policies for Passive RFID Sensors with RF-Energy Harvesting. IEEE International Conference on Communications (ICC) 2010, 1–6 (2010)

    Google Scholar 

  35. De Vita, G., Iannaccone, G.: Desgin criteria for the RF section of UHF and microwave RFID transponders. IEEE Trans. Microwave Theory Tech. 53(9), 2978–2990 (2009)

    Article  Google Scholar 

  36. Sample, A.P., Yeager, D.J., Smith, J.R., Powledge, P.S., Mamishev, A.V.: Energy harvesting in rfid systems. In: Proceedings of International Conference on Actual Problems of Electron Devices Engineering, pp. 445–449 (2006)

    Google Scholar 

  37. Sample, A.P., Yeager, D.J., Powledge, P.S., Mamishev, A.V., Smith, J.R.: Design of an RFID-Based Battery-Free programmable sensing platform. IEEE Trans. Instrum. Measur. 57(11), 2608–2615 (2008)

    Article  Google Scholar 

  38. Boaventura, A.S., Testera, A.R., Carvalho, N.B., Barciela, M.F.: Using X-parameters to model diode-based RF power probes. In: Proceedings of IEEE International Microwave Symposium, pp. 1–4 (2011)

    Google Scholar 

  39. Georgiadis, A., Andia Vera G., Collado A.: Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic energy harvesting. IEEE Antennas Wirel. Porpag. Lett. 9, 444–446 (2010)

    Google Scholar 

  40. Andia Vera G., Duroc Y., Tedjini S.: Analysis of harmonics in UHF RFID signals. IEEE Trans. Microwave Theory Tech. 61(6), 2481–2490 (2013)

    Google Scholar 

  41. Duroc, Y., Kaddour, D.: RFID potential impacts and future evolution for green projects. Energy Procedia J. Elsevier/Science Direct 18, 91–98 (2012)

    Article  Google Scholar 

  42. Duroc, Y., Andia Vera, G.: Considerations on the backscattered wireless communication links. Microwave Opt. Technol. Lett. 55(3), 554–559 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Duroc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duroc, Y., Vera, G.A. (2014). Towards Autonomous Wireless Sensors: RFID and Energy Harvesting Solutions. In: Mukhopadhyay, S. (eds) Internet of Things. Smart Sensors, Measurement and Instrumentation, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-04223-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04223-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04222-0

  • Online ISBN: 978-3-319-04223-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics