Skip to main content

Multiplicity Results for some Perturbed and Unperturbed “Zero Mass” Elliptic Problems in Unbounded Cylinders

  • Chapter
  • First Online:
Analysis and Topology in Nonlinear Differential Equations

Abstract

We study the following nonlinear elliptic problem \( \left\{ \begin{array}{clclclcllc}{{-\Delta u}=g(x,u)+f(x) \;\;\; \rm {in} \; \Omega} \\ {\quad u=0 \qquad \qquad \qquad \; \rm {on} \; \partial \Omega}\end{array}\right. \) on unbounded cylinders \( \Omega = \tilde{\Omega}\times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}, N-m \geq 2, m \geq 1, \) under suitable conditions on g and f. In the unperturbed case \( f(x) \equiv 0, \) by means of the Principle of Symmetric Criticality by Palais and some compact imbeddings in spherically symmetric spaces, existence and multiplicity results are proved by applying Mountain Pass Theorem and its Symmetric version. Multiplicity results are also proved in the perturbed case \( f(x) \equiv 0, \) f(x)≢0 by using Bolle’s Perturbation Methods and suitable growth estimates on min-max critical levels. To this aim, we improve a classical estimate of the number N_(-∆ + V) of the negative eigenvalues of the operator -∆+V(x) when the potential V is partially spherically symmetric.

Mathematics Subject Classification (2010). 35J20; 35J60; 46E35.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    Google Scholar 

  2. A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Azzollini, A. Pomponio, Compactness results and applications to some “zero mass” elliptic problems, Nonlinear Anal. 69 (2008), 3559–3576.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Barile, A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains, Discrete and Continuous Dynamical Systems, Supplement 2013, 41–49.

    Google Scholar 

  5. S. Barile, A. Salvatore, Weighted elliptic systems of Lane–Emden type in unbounded domains, Mediterr. J. Math. 9 (2012), 409–422.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Barile, A. Salvatore, Existence and multiplicity results for some elliptic systems in unbounded cylinders, Milan J. Math. 81 (2013), 99–120.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Badiale, L. Pisani, S. Rolando, Sum of weighted spaces and nonlinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 18 (2011), 369–405.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Bahri, H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bahri, P.L. Lions, Morse index of some mini-max critical points, Comm. Pure Appl. Math. 41 (1988), 1027–1037.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Benci, D. Fortunato, Towards a unified field theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), 379–414.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Berestycki, P.L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–345.

    MATH  MathSciNet  Google Scholar 

  12. H. Berestycki, P.L. Lions, Nonlinear scalar field equations II. Existence of infinitely many solutions, Arch. Rat. Mech. Anal. 82 (1983), 347–375.

    Google Scholar 

  13. H. Berestycki, P.L. Lions, Existence d’états multiples dans des équations de champs scalaires non linéaires dans le cas de masse nulle, C. R. Acad. Sci. Paris série I 297 (1983), 267–270.

    MATH  MathSciNet  Google Scholar 

  14. P. Bolle, On the Bolza Problem, J. Differential Equations 152 (1999), 274–288.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Bolle, N. Ghoussoub, H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems, Manuscripta Math. 101 (2000), 325–350.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

    Google Scholar 

  17. A.M. Candela, G. Palmieri, A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry, Topol. Methods Nonlinear Anal. 27 (2006), 117–132.

    MATH  MathSciNet  Google Scholar 

  18. A.M. Candela, A. Salvatore, Multiplicity results of an elliptic equation with nonhomogeneous boundary conditions, Topol. Methods Nonlinear Anal. 11 (1998), 1–18.

    MATH  MathSciNet  Google Scholar 

  19. A.M. Candela, A. Salvatore, M. Squassina, Semilinear elliptic systems with lack of symmetry, Dynam. Contin. Discrete Impuls. Systems Ser. A (10) (2003), 181–192.

    Google Scholar 

  20. M. Clapp, Y. Ding, S. Hernández-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of non symmetric elliptic systems, Electron. J. Differential Equations 100 (2004), 1–18.

    Google Scholar 

  21. M. Cwickel, Weak type estimates and the number of bounded states of Schrödinger operators, Ann. Math. 106 (1977), 93–102.

    Article  Google Scholar 

  22. X. Fan, Y. Zhao, Linking and Multiplicity results for the p-Laplacian on Unbounded Cylinders, J. Math. Anal. Appl. 260 (2001), 479–489.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Li, S.T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), 309–318.

    Article  MATH  MathSciNet  Google Scholar 

  24. E.H. Lieb, Bounds of the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc. 82 (1976), 751–753.

    Article  MATH  MathSciNet  Google Scholar 

  25. P.L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315–334.

    Article  MATH  MathSciNet  Google Scholar 

  26. R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19–30.

    Article  MATH  MathSciNet  Google Scholar 

  27. P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65 (1986).

    Google Scholar 

  28. P.H. Rabinowitz, Multiple critical points of perturbed symmetryc functionals, Trans. Amer. Math. Soc. 272 (1982), 753–769.

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Rosenbljum, The distribution of the discrete spectrum for singular differential operators, Soviet Math. Dokl. 13 (1972), 245–249.

    Google Scholar 

  30. M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), 335–364.

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Tanaka, Morse indices at critical points related to the Symmetric Mountain Pass Theorem and applications, Comm. Partial Differential Equations 14 (1989), 99–128.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Schechter, W. Zou, Critical point theory and its applications, Springer, New York, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barile, S., Salvatore, A. (2014). Multiplicity Results for some Perturbed and Unperturbed “Zero Mass” Elliptic Problems in Unbounded Cylinders. In: de Figueiredo, D., do Ó, J., Tomei, C. (eds) Analysis and Topology in Nonlinear Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol 85. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-04214-5_3

Download citation

Publish with us

Policies and ethics