Skip to main content

On Singular Liouville Systems

  • Chapter
  • First Online:
Analysis and Topology in Nonlinear Differential Equations

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 85))

Abstract

We discuss a class of planar systems of Liouville type in presence of singular sources. When the coupling matrix admits positive entries, we provide necessary and sufficient conditions for the existence of radial solutions and corresponding uniqueness. For this purpose we point out a log HLS inequality in system’s form that involves weights and holds in the radial setting.

Mathematics Subject Classification (2010). 35J47, 35J61, 34A34, 47J20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambrosetti and G. Prodi “A Premier of Nonlinear Analysis”, Cambridge University Press, 34 Cambridge, UK 1993.

    Google Scholar 

  2. (MR1636569) T. Aubin, “Some Nonlinear Problems in Riemannian Geometry”, Springer-Verlag, Berlin Heidelberg New York, 1998.

    Google Scholar 

  3. D. Bartolucci and A. Malchiodi, An improved Geometric Inequality via Vanishing Moments, with Applications to Singular Liouville Equations, Comm. Math. Phys., in press.

    Google Scholar 

  4. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math. 128 (1993), 213–242.

    Article  MathSciNet  Google Scholar 

  5. (MR1145596) E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part I, Comm. Math. Phys., 143 (1992), 501–525.

    Google Scholar 

  6. (MR1362165) E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part II, Comm. Math. Phys., 174 (1995), 229–260.

    Google Scholar 

  7. E. Carlen and M. Loss, Competing Symmetries, the logarithmic HLS inequality and Onofri inequality on S n, Geom. Funct. Analysis, 1 (1992), 90–104.

    Article  MathSciNet  Google Scholar 

  8. (MR1262195) S. Chanillo and M. Kiessling, Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys., 160 (1994), 217–238.

    Google Scholar 

  9. (MR1361515) S. Chanillo and M. Kiessling, Conformally invariant systems of nonlinear PDE of Liouville type, Geom. Funct. Analysis, 5 (1995), 924–947.

    Google Scholar 

  10. R. Chen, Y. Guo and D. Spirn, Asymptotic behavior and symmetry of condensate solutions in electroweak theory, preprint 2010.

    Google Scholar 

  11. (MR1233443) W. Chen and C. Li, Qualitative properties of solutions of some nonlinear elliptic equations in R 2, Duke Math. J., 71 (1993), 427–439.

    Google Scholar 

  12. (MR1473855) M. Chipot, I. Shafrir and G.Wolansky, On the solutions of Liouville systems, Jour. Diff. Eq., 140 (1997), 59–105, Erratum J.D.E., 178 (2002), 630.

    Google Scholar 

  13. J. Dolbeault, Sobolev and Hardy–Littlewood–Sobolev inequalities: duality and fast diffusion, Math. Res. Lett. 18 (2011), 1037–1050.

    Article  MATH  MathSciNet  Google Scholar 

  14. (MR2437030) J. Dolbeault, M.J. Esteban and G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli–Kohn– Nirenberg inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 313–341.

    Google Scholar 

  15. (MR2509375) J. Dolbeault, M.J. Esteban and G. Tarantello, Multiplicity results for the assigned Gauss curvature problem in \( \mathbb{R}^{2} \), Nonlinear Anal. T.M.A., 70 (2009), 2870–2881.

    Google Scholar 

  16. N. Dunford, J.T. Schwartz, “Linear Operator. Part I: General Theory”, Wiley Interscience New York, 1958.

    Google Scholar 

  17. G. Dunne, “Self-Dual Chern–Simons Theories”, Lect. Notes in Phys. vol. m 36 New Series, Springer, 1995.

    Google Scholar 

  18. L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68 (1993), 415–454.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Fortini and G. Tarantello, The role of Liouville systems in the study of nonabelian Chern–Simons vortices, in preparation.

    Google Scholar 

  20. (MR1846799) J. Jost and G. Wang, Analytic aspects of the Toda system: I. A Moser–Trudinger inequality, Comm. Pure Appl. Math., 54 (2001), 1289–1319.

    Google Scholar 

  21. (MR1877003) J. Jost and G. Wang, Classification of solutions of a Toda system in R 2, Int. Math. Res. Not., 6 (2002), 277–290.

    Google Scholar 

  22. (MR1193342) M.K.H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1991), 27–56.

    Google Scholar 

  23. (MR1797146) M.K.H. Kiessling, Statistical mechanics approach to some problems in conformal geometry, Phys. A, 79 (2000), 353–368.

    Google Scholar 

  24. C.S. Lin, J. Wei and D. Ye Classification and nondegeneracy of SU(n + 1) Toda Systems with singular sources, Invent. Math. To appear. 117–143.

    Google Scholar 

  25. C.S. Lin and L. Zhang Profile of bubbling solutions to a Liouville system, Ann. I.H.P. Anal. Non Linéaire, 27 (2010), 117–143.

    Google Scholar 

  26. C.S. Lin and L. Zhang Classification of radial solutions to Liouville systems with singularities, Preprint 2013, arXiv: 1302.3866v1.

    Google Scholar 

  27. (MR0301504) J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077–1092.

    Google Scholar 

  28. (MR0677001) E. Onofri, On the positivity of the effective action in a theory of random surfaces, Comm. Math. Phys., 86 (1982), 321–326.

    Google Scholar 

  29. A. Poliakovsky and G. Tarantello, On a planar Liouville-type equation in the study of selfgravitating strings, J. Diff. Eq., 252 (2012), 3668–3693.

    Article  MATH  MathSciNet  Google Scholar 

  30. (MR1855007) J. Prajapat and G. Tarantello, On a class of elliptic problems in R2: Symmetry and Uniqueness results, Proc. Roy. Soc. Edinburgh A, 131 (2001), 967–985.

    Google Scholar 

  31. (MR1859233) I. Shafrir and G. Wolansky, Moser–Trudinger type inequalities for systems in two dimensions, C.R.A.S. Paris série I, 333 (2001), 439–443.

    Google Scholar 

  32. (MR2159222) I. Shafrir and G. Wolansky, Moser–Trudinger and logarithmic HLS inequalities for systems, J. Euro. Math. J. 7 (2005), 413–448.

    Google Scholar 

  33. I. Shafrir and G. Wolansky, The logarithmic HLS inequalities for systems on compact manifolds, J. Funct. Anal. 227 (2005), 200–226.

    Article  MATH  MathSciNet  Google Scholar 

  34. (MR1186683) T. Suzuki, Global analysis for a two dimensional elliptic eigenvalue problem with exponential nonlinearity, Ann. I.H.P. Anal. Non Linéaire, 9 (1992), 367–398.

    Google Scholar 

  35. (MR2403854) G. Tarantello, Selfdual gauge field vortices: An analytical approach, P.N.L.D.E., 72, Birkäuser, Boston MA, 2008.

    Google Scholar 

  36. (MR1005085) M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., 324 (1991), 793–821.

    Google Scholar 

  37. (MR1689869) G. Wang, Moser–Trudinger inequality and Liouville systems, C.R. A.S. Paris serie I, 328 (1999), 895–900.

    Google Scholar 

  38. (MR1226964) G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math., 59 (1992), 251–272.

    Google Scholar 

  39. (MR1838682) Y. Yang, “Solitons in Field Theory and Nonlinear Analysis,” Springer Monographs in Mathematics, Springer-Verlag New York, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Poliakovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poliakovsky, A., Tarantello, G. (2014). On Singular Liouville Systems. In: de Figueiredo, D., do Ó, J., Tomei, C. (eds) Analysis and Topology in Nonlinear Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol 85. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-04214-5_22

Download citation

Publish with us

Policies and ethics