Advertisement

MIIC: Monitoring and Imaging Based on Interferometric Concepts

  • Christoph Sens-SchönfelderEmail author
  • Hortencia Flores-Estrella
  • Martina Gassenmeier
  • Michael Korn
  • Florian Köllner
  • Claus Milkereit
  • Ernst Niederleithinger
  • Stefano Parolai
  • Marco Pilz
  • Eraldo Pomponi
  • Andreas Schuck
  • Katja Thiemann
  • Jürgen Völkel
Chapter
Part of the Advanced Technologies in Earth Sciences book series (ATES)

Abstract

The capability of seismic interferometry to create virtual sources at receiver sites from records of ambient seismic noise is used for seismic monitoring and tomography of different targets. We present hardware developed specifically for the needs of seismic data acquisition in the context of monitoring and ambient noise tomography. Digitizers are capable of continuous recording and real time wireless data transmission in self organizing meshes to allow for robust telemetry in difficult circumstances such as cities or landslides that may cause the loss of stations. A software tool is described that implements required processing and analysis procedures for the interferometric processing. We have applied the novel 3D ambient noise surface wave tomography approach to the Issyk-Ata fault in Kyrgyzstan. It shows that seismic interferometry can successfully be used for structural investigations on length scales of only 100 m. The method uses 3D sensitivity kernels for a single-step inversion of phase velocity dispersion curves for subsurface S-wave velocity structure and incorporates topography. We recover lateral differences in sediment velocities and an offset of the bedrock depth across the fault. Applications of interferometric monitoring to the geological \(\mathrm{CO}_2\) storage test site in Ketzin (Germany) and to the Piton de la Fournaise volcano (La Reunion island) emphasize the value of this approach. At Ketzin site we identify variations of the subsurface velocities that are correlated with changes in the ground water level and mask potential signals from the reservoir depth. At Piton de la Fournaise volcano, seismic velocity changes are linked to volcanic processes as shown by comparison with surface displacement and seismicity that are typically used to characterize volcanic activity. We observe a clear distinction between phases of inflation prior to eruptions and deflation during periods of quiescence.

Keywords

Rayleigh Wave Seismic Velocity Velocity Change Wireless Mesh Network Seismic Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The project MIIC is part of the R&D-Programme GEOTECHNOLOGIEN. It is funded by the German Ministry of Education and Research (BMBF), Grants/ Förderkennzeichen of sub-projects 03G0736A, 03G0736B, 03G0736C, 03G0736D, 03G0757A.

Data from Piton de la Fournaise was kindly provided by the UnderVolc project and the Observatoire volcanologique du Piton de la Fournaise.

References

  1. Aki K (1957) Space and time spectra of stationary stochastic waves, with a special reference to microtremors. Bull Earthq Res Inst Tokyo Univ 24:415–457Google Scholar
  2. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260CrossRefGoogle Scholar
  3. Bonnefoy-Claudet S, Cotton F, Bard PY (2006) The nature of noise wavefield and its applications for site effects studies: a literature review. Earth-Sci Rev 79:205–227CrossRefGoogle Scholar
  4. Brenguier F, Shapiro NM, Campillo M, Nercessian A, Ferrazzini V (2007) 3D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys Res Lett 34:L02305. doi: 10.1029/2006GL028586
  5. Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130CrossRefGoogle Scholar
  6. Brenguier F, Kowalski P, Staudacher T, Ferrazzini V, Lauret F, Boissier P, Di Muro A (2012) First results from the underVolc high resolution seismic and GPS network deployed on Piton de la Fournaise volcano. Seismol Res Lett 83:97–102CrossRefGoogle Scholar
  7. Campillo M, Paul A (2003) Long-range correlations in the diffuse seismic coda. Science 299:547–549CrossRefGoogle Scholar
  8. Campillo M (2006) Phase and correlation in ‘random’ seismic fields and the reconstruction of the green function. Pure Appl Geophys 163:475–502CrossRefGoogle Scholar
  9. Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K (2006) Seismic interferometry—turning noise into signal. Lead Edge 25:1082–1092CrossRefGoogle Scholar
  10. Curtis A, Halliday D (2010) Source-receiver wave field interferometry. Phys Rev E 81:1–10CrossRefGoogle Scholar
  11. Chávez-García FJ, Luzón F (2005) On the correlation of seismic microtremors. J Geophys Res 110:B11313. doi: 10.1029/2005JB003671 CrossRefGoogle Scholar
  12. Derode A, Larose E, Tanter M, de Rosny J, Tourin A, Campillo M, Fink M (2003) Recovering the Green’s function from field-field correlations in an open scattering medium (L). J Acoust Soc Am 113:2973–2976CrossRefGoogle Scholar
  13. Fleming K, Picozzi M, Milkereit C, Kuhnlenz F, Lichtblau B, Fischer J, Zulfikar C, Özel O (2009) SAFER and EDIM working groups: the self-organizing seismic early warning information network (SOSEWIN). Seismol Res Lett 80(5):755–771Google Scholar
  14. Forbriger T (2003) Inversion of shallow seismic wavefields. I. Wavefield transformation. Geophys J Int 153:719–734CrossRefGoogle Scholar
  15. Foti S, Comina C, Boiero D, Socco LV (2009) Non uniqueness in surface wave inversion and consequences on seismic site response analyses. Soil Dyn Earthq Eng 29:982–993CrossRefGoogle Scholar
  16. Halliday D, Curtis A (2008) Seismic interferometry, surface waves and source distribution. Geophys J Int 175:1067–1087CrossRefGoogle Scholar
  17. Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeor 2:36–50CrossRefGoogle Scholar
  18. Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, Lüth S, Ivandic M (2012) Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophys Prospect 60(5):957–973CrossRefGoogle Scholar
  19. Korjenkov AM, Kolchenko VA, Rott PG, Abdieva SV (2012) Strong mediaeval earthquakes in the Chuy basin, Kyrgyzstan. Geotectonics 46:303–314CrossRefGoogle Scholar
  20. Lobkis OI, Weaver RL (2001) On the emergence of the Green’s function in the correlations of a diffuse field. J Acous Soc Am 110:3011–3017CrossRefGoogle Scholar
  21. Megies T, Beyreuther M, Barsch R, Krischer L, Wassermann J (2011) ObsPy-What can it do for data centers and observatories? Ann Geophys 54:47–58Google Scholar
  22. Obermann A, Planes T, Larose E, Sens-Schönfelder C, Campillo M (2013) Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophys J Int 194(1):372–382CrossRefGoogle Scholar
  23. Parolai S, Orunbayev S, Bindi D, Strollo A, Usupayev S, Picozzi M, Di Giacomo D, Augliera P, D’Alema E, Milkereit C, Moldobekov B, Zschau J (2010) Site effect assessment in Bishkek (Kyrgyzstan) using earthquake and noise recording data. Bull Seismol Soc Am 100(6):3068–3082CrossRefGoogle Scholar
  24. Picozzi M, Parolai S, Bindi D, Strollo A (2009) Characterization of shallow geology by high-frequency seismic noise tomography. Geophys J Int 176:164–174CrossRefGoogle Scholar
  25. Pilz M, Parolai S, Picozzi M, Bindi D (2012) Three-dimensional shear wave velocity imaging by ambient seismic noise tomography. Geophys J Int 189:501–512CrossRefGoogle Scholar
  26. Pilz M, Parolai S, Bindi D (2013) 3D passive imaging of complex seismic fault systems: evidence of surface traces of the Issyk-Ata fault (Kyrgyzstan). Geophys J Int 194:1955–1965. doi: 10.1093/gji/ggt214 Google Scholar
  27. Poupinet G, Ellsworth W, Frechet J (1984) Monitoring velocity variations in the crust using earthquake doublets: an application to the calaveras fault, California. J Geophys Res 89(4):5719–5731CrossRefGoogle Scholar
  28. Rickett J, Claerbout J (1999) Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring. Lead Edge 18:957–960CrossRefGoogle Scholar
  29. Roult G, Peltier A, Taisne B, Staudacher T, Ferrazzini V, Di Muro A (2012) A new comprehensive classification of the Piton de la Fournaise activity spanning the 1985–2010 period. Search and analysis of short-term precursors from a broad-band seismological station. J Volcanol Geoth Res 241–242:78–104CrossRefGoogle Scholar
  30. Sens-Schönfelder C, Wegler U (2006) Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys Res Lett 33(21):1–5Google Scholar
  31. Sens-Schönfelder C, Wegler U (2011) Passive image interferometry for monitoring crustal changes with ambient seismic noise. C R Geosci 343:639–651CrossRefGoogle Scholar
  32. Snieder R, Grêt A, Douma H, Scales J (2002) Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science 295(5563):2253–5CrossRefGoogle Scholar
  33. Snieder R (2004) Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69:046610-1–046610-8Google Scholar
  34. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87:134301-1–134301-4Google Scholar
  35. Weaver RL, Lobkis OI (2004) Diffuse fields in open systems and the emergence of the greens function. J Acoust Soc Am 116:2731–2734CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christoph Sens-Schönfelder
    • 1
    Email author
  • Hortencia Flores-Estrella
    • 2
  • Martina Gassenmeier
    • 1
  • Michael Korn
    • 2
  • Florian Köllner
    • 3
  • Claus Milkereit
    • 1
  • Ernst Niederleithinger
    • 4
  • Stefano Parolai
    • 1
  • Marco Pilz
    • 1
  • Eraldo Pomponi
    • 2
  • Andreas Schuck
    • 3
  • Katja Thiemann
    • 5
  • Jürgen Völkel
    • 5
  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Leipzig UniversityInstitute for Geophysics and GeologyLeipzigGermany
  3. 3.GGL Geophysics and Geotechnics Leipzig GmbHLeipzigGermany
  4. 4.BAM Federal Institute for Materials Research and TestingBerlinGermany
  5. 5.K-UTEC AG Salt TechnonogiesSondershausenGermany

Personalised recommendations