Skip to main content

Principles of Paleoceanographic Reconstruction

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

Abstract

This chapter introduces the principles of paleoceanographic reconstructions and proxy data, focusing on the concepts of climatic, biological, geological, geochemical as well as other large-scale proxies, tracers and records useful for such reconstructions in the western South Atlantic. Different proxies particularly useful for the Argentine margin, including physical and chemical properties of sediments, microfossils and geochemical and isotopic properties, are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Berger WH, Schulz M, Wefer G (2010). Quaternary oceans and climate change: lessons for the future? Int J Earth Sci (Geol Rundsch) 99(Suppl 1):S171–S189

    Google Scholar 

  • Boltovskoy E (1981) Masas de agua en el Atlántico Sudoccidental. In: Boltovskoy D (ed) Atlas de Zooplancton del Atlántico Sudoccidental (Mar del Plata), pp 227–236

    Google Scholar 

  • Borgatti L, Soldati M (2010a) Landslides and climatic changes. In: Alcántara-Ayala I, Goudie AS (eds) Geomorphological hazard and disaster prevention. Cambridge University Press, UK, pp 87–96

    Google Scholar 

  • Borgatti L, Soldati M (2010b) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphology 120(1–2):56–64

    Article  Google Scholar 

  • Brothers DS, ten Brink US, Andrews BD, Chaytor JD, Twichell DC (2013) Geomorphic process fingerprints in submarine canyons. Marine Geology 337:53–66

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (2007) Elemental proxies for paleoclimatic and paleoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology 1(14), Elsevier, pp 567–644

    Google Scholar 

  • Catuneanu O (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. J Afr Earth Sc 35(1):1–43

    Article  Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy, 1st edn. Elsevier, 375 pp

    Google Scholar 

  • Christelle C, Hamelin B (2007) Isotopic tracers of water masses and deep currents. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology 1(15), Elsevier, pp 645–680

    Google Scholar 

  • Dorschel B, Gutt J, Piepenburg D, Schröder M, Arndt JE (2014) The influence of the geomorphological and sedimentological settings on the distribution of epibenthic assemblages on a flat topped hill on the over-deepened shelf of the western Weddell Sea (Southern Ocean). Biogeosciences 11:3797–3817

    Article  Google Scholar 

  • Dunlop P, Sacchetti F, Benetti S, O’Cofaigh C (2011) Mapping Ireland’s glaciated continental margin using marine geophysical data. In: Smith MJ, Paron P, Griffiths JS (eds) Geomorphological Mapping. Developments in Earth Surface Processes, vol 15. Elsevier, pp 339–354

    Google Scholar 

  • Francois R (2007). Paleoflux and paleocirculation from sediment 230Th and 231Pa/230Th. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology 1(16), Elsevier, pp 681–716

    Google Scholar 

  • Goudie AS (ed) (2004) Encyclopedia of Geomorphology. Routledge; International Association of Geomorphologists. London, New York, 1156 pp

    Google Scholar 

  • Hay WH (2008) Evolving ideas about the Cretaceous climate and ocean circulation. Cretac Res 29:725–753

    Article  Google Scholar 

  • Higginson MJ (2009) Geochemical proxies (Non-Isotopic). In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Part of the series Encyclopedia of Earth Sciences Series. Springer, pp 341–354

    Google Scholar 

  • Hillaire-Marcel C, de Vernal A (2007) Proxies in Late Cenozoic paleoceanography. Developments in Marine Geology 1. Elsevier, 843 pp

    Google Scholar 

  • Ledbetter MT (1986) Bottom-current pathways in the Argentine basin revealed by mean silt particle size. Nature 321:423–425

    Article  Google Scholar 

  • Lidz BH, Shinn EA (1991) Paleoshorelines, reefs, and a rising sea: South Florida, U.S.A. J Coastal Res 7:203–229

    Google Scholar 

  • Lyons R, Tooth S, Duller GAT (2014) Late Quaternary climatic changes revealed by luminescence dating, mineral magnetism and diffuse reflectance spectroscopy of river terrace paleosols: a new form of geoproxy data for the southern African interior. Quatern Sci Rev 95:43–59

    Article  Google Scholar 

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Article  Google Scholar 

  • McCave IN (2007) Deep-sea sediment deposits and properties controlled by currents. In Hillaire-Marcel C, de Vernal A (eds) Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology 1(1):19–62. Elsevier

    Google Scholar 

  • McCave IN, Manighetti B, Beveridge NAS (1995) Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature 374:149–152

    Article  Google Scholar 

  • Micallef A, Berndt C, Mason DG, Stow DAV (2007) Fractal statistics of the Storegga Slide. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Springer, The Nederlands, pp 3–10

    Chapter  Google Scholar 

  • Pickering KT, Hiscott RN, Hein FJ (1989) Deep-marine environments, clastic sedimentation and tectonics. Unwin Hyman, London, p 416

    Google Scholar 

  • Pickering KT, Clark JD, Smith RDA, Hiscott RN, Ricci Lucchi F, Kenyon NH (1995) Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. In: Pickering KT, Hiscott RN, Kenyon NH, Ricci Lucchi F, Smith RDA (eds) Atlas of deep-water environments: architectural style in turbidite systems. Chapman et al., London, pp 1–10

    Chapter  Google Scholar 

  • Rebesco M, Camerlenghi A (2008) Contourites. Elsevier, London, p 663

    Google Scholar 

  • Revel M, Cremer M, Grousset FE, Labeyrie L (1996) Grain-size and Sr-Nd isotopes as tracer of paleo-bottom current strength, Northeast Atlantic Ocean. Mar Geol 131:233–249

    Article  Google Scholar 

  • St-Onge G, Mulder T, Francus P, Long B (2007). Continuous physical properties of cored marine sediments. In: Hillaire-Marcel C, de Vernal A (eds) Proxies in Late Cenozoic paleoceanography. Developments in Marine Geology 1(2):63–98. Elsevier

    Google Scholar 

  • Stow DAV, Pudsey CJ, Howe JA, Faugères J-C, Viana AR (eds.) (2002) Deep-water contourite systems: modern drifts and ancient series, Seismic and Sedimentary characteristics. The Geological Society of London, Memoir 22, 466 pp

    Google Scholar 

  • Thomas DSG (2013) Reconstructing paleoclimates and paleoenvironments in drylands: what can landform analysis contribute? Earth Surf Proc Land 38(1):3–16

    Article  Google Scholar 

  • Thomas DSG, Burrough SL (2012) Interpreting geoproxies of Late Quaternary climate change in African drylands: implications for understanding environmental change and early human behaviour. Quatern Int 253:5–17

    Article  Google Scholar 

  • Vail PR (1987) Seismic stratigraphy interpretation procedure. In: Bally AW (ed) Atlas of seismic stratigraphy: AAPG Studies in Geology 27(1):1–10

    Google Scholar 

  • Vail PR, Todd RG, Sangree JB (1977) Seismic stratigraphy and global changes of sea level: Part 5. Chronostratigraphic significance of seismic reflections: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. Memoir 26:99–116

    Google Scholar 

  • Wefer G, Berger WH (1996) Global change and marine geology: introduction. Geol Rundsch 85:399–400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Laprida .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Laprida, C., García Chapori, N.L., Violante, R.A. (2017). Principles of Paleoceanographic Reconstruction. In: The Argentina Continental Margin. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-04196-4_6

Download citation

Publish with us

Policies and ethics