Model of the Planetary Gear Based on Multi-Body Method and Its Comparison with Experiment on the Basis of Gear Meshing Frequency and Sidebands

  • Dariusz DąbrowskiEmail author
  • Jan Adamczyk
  • Hector Plascencia Mora
  • Zahra Hashemiyan
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Model tests can be used as a source of information about gearbox dynamics. Simulation of phenomena occurring in gearboxes allows to identify vibration signatures related to other failures of gears, bearings and shafts. In the chapter, the rigid-elastic model of the planetary gear is presented. The model was developed on the basis of the multi-body dynamics method. To conduct dynamic simulations specialized software MSC ADAMS was used. The multi-body method merges advantages of CAD modeling and efficient numerical simulations. Developed model allows to simulate the transmission error generated by a gearbox and forces in planet-sun and planet-ring meshing. In the tests it was observed that phase relations between meshing process influence on the sidebands of meshing frequency harmonics. The model was compared with experimental data on the basis of gears’ meshing frequencies and modulation sidebands.


Model of planetary gear Multi-body method Gearbox dynamics 



The authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.


  1. Åkerblom M (2001) Gear noise and vibration–a literature survey. Volvo construction equipment components AB. Accessed 15 July 2013
  2. Bartelmus W (1998) Diagnostyka maszyn górniczych górnictwo odkrywkowe. Wydawnictwo "Śla̧sk", KatowiceGoogle Scholar
  3. Bartelmus W, Chaari F, Zimroz R, Haddar M (2010) Modelling of gearbox dynamics under time-varying nonstationary load for distributed fault detection and diagnosis. Euro J Mech A Solid 29:637–646CrossRefGoogle Scholar
  4. Dąbrowski D, Adamczyk J (2012) Analysis of vibrations generated by the multi-body model of a planetary gear. Mech Control 31(4):143–149Google Scholar
  5. Dąbrowski D, Adamczyk J, Mora PH (2012) A multi-body model of gears for simulation of vibration signals for gears misalignment. Diagnostyka-Appli Struct Health Usage Condition Monitor 62(2):15–23Google Scholar
  6. Dąbrowski D, Batko W, Cioch W (2013) Application of laser measurements for validation of the gears model with an experimental data. Acta Physica Polonica A 123(6):1016–1019. doi: 10.12693/APhysPolA.123.1016 Google Scholar
  7. Dąbrowski Z, Radkowski S, Wilk A (2000) Dynamika przekładni zȩbatych. Wydawnictwo i Zakład Poligrafii Instytutu Technologii i Eksploatacji, WarszawaGoogle Scholar
  8. Dresig H, Schreiber U (2005) Vibration analysis for planetary gears. Modeling and multibody simulation. In: International conference on mechanical engineering and mechanics, Nanjing, China, 26–28 October 2005Google Scholar
  9. Ebrahimi S, Eberhard P (2006) Rigid-elastic modeling of meshing gear wheels in multibody systems. Multibody Syst Dyn 16(1):55–71CrossRefzbMATHGoogle Scholar
  10. Chaari F, Zimroz R, Bartelmus W, Fakhfakh T, Haddar M (2012) Model based investigation on a two stage gearbox dynamics under non-stationary operations. In: Proceedings of the 2nd international conference CMMNO’2012. Springer, Tunisia, pp 133–143Google Scholar
  11. Filonik R, Mączak J, Radkowski S (1998) Apparent interface method as a way of modelling the meshing process disturbances. Mach Dyn Prob 19:95–108Google Scholar
  12. Fisher A (1961) Factors in calculating the load-carrying capacity of helical gears. Machinery 98:545–552Google Scholar
  13. Han B, Cho M, Kim C, Lim C, Kim J (2009) Prediction of vibrating forces on meshing gears for a gear rattle using a new multi-body dynamic model. Int J Autom Technol 4(10):469–474CrossRefGoogle Scholar
  14. Inalpolat M, Kahraman A (2009) A theoretical and experimental investigation of modulation sidebands of planetary gear sets. J Sound Vib 323:677–696CrossRefGoogle Scholar
  15. Kong D, Meagher J M, Xu C, Wu X, Wu Y (2008) Nonlinear contact analysis of gear teeth for malfunction diagnostics. In: IMAC XXVI conference and exposition on structural dynamics, Orlando-Florida, 4 February 2008Google Scholar
  16. Łazarz B, Peruń G (2006) Wpływ uszkodzeń elementów przekładni obiegowej na siły w zazȩbieniach. Transp Prob 1:23–38Google Scholar
  17. Łazarz B, Peruń G (2009) Identification and verification of simulation model of gears working in circulating power system. Diagnostyka 52(4):55–60Google Scholar
  18. Łazarz B, Peruń G (2012) Influence of construction factors on the vibrational activity of the gearing. Transp Prob 7(2):95–102Google Scholar
  19. MSC Adams (2010) Reference manualGoogle Scholar
  20. Müller L (1986) Przekładnie zȩbate dynamika. Wydawnictwo Naukowo-Techniczne, WarszawGoogle Scholar
  21. Nevazt Ozguvent H, Houser DR (1988) Mathematical models used in gear dynamics-a review. J Sound Vib 121(3):383–411CrossRefGoogle Scholar
  22. Palermo A, Mundo D, Lentini A, Hadjit R, Mas P, Desmat W (2010) Gear noise evaluation through multibody te-based simulations. In: Proceedings of ISMA Leuven, Belgio, pp 3033–3046Google Scholar
  23. Radkowski S (1996) Zmiana podatności zȩbów jako parametr diagnostyczny. Przegla̧d Mechaniczny 5–6:15–48Google Scholar
  24. Randall R (2011) Vibration-based condition monitoring industrial, areospace and automative applications, 1st edn. Wiley, ChichesterGoogle Scholar
  25. Shabana A (2005) Dynamics of multibody systems, 3rd edn. Cambridge University Press, ChicagoGoogle Scholar
  26. Strauch H (1953) Zahnradschwingungengungen (Gear vibrations). Zeitschrift des Vereines Deutscher Ingiere 95:159–163Google Scholar
  27. Tuplin WA (1953) Dynamic loads on gear teeth. Mach Des 25:203–211Google Scholar
  28. Viadero F, Fernandez del Rincon A, Liano E (2012) Dynamic analysis of an offshore wind turbine drivetrain on a floating support. In: Proceedings of the 2nd international conference CMMNO’2012. Springer, Tunisia, pp 627–634Google Scholar
  29. Vicuña M (2012) Theoretical frequency analysis of vibrations from planetary gearboxes. Forsch Ingenieurwes 76:15–31CrossRefGoogle Scholar
  30. Wojtyra M, Fra̧czek J, (2007) Metoda układów wieloczłonowych w dynamice mechanizmów. Oficyna Wydawnicza Politechniki Warszawskiej, WarszawaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dariusz Dąbrowski
    • 1
    Email author
  • Jan Adamczyk
    • 2
  • Hector Plascencia Mora
    • 3
  • Zahra Hashemiyan
    • 4
  1. 1.Department of Mechanics and Vibroacoustics, Faculty of Mechanical Engineering and RoboticsAGH University of Science and TechnologyKrakowPoland
  2. 2.Central Institute for Labor Protection-National Research Institute (CIOP-PIB)WarszawaPoland
  3. 3.Department of Mechanical Engineering, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo BlancoUniversity of GuanajuatoSalamancaMexico
  4. 4.Faculty of Mechanical Engineering and Robotics, Department of Robotics and MechatronicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations