Skip to main content

Time-Angle Periodically Correlated Processes

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Cyclostationary processes have now become an essential mathematical representation of vibration and acoustical signals produced by rotating machines. However, to be applicable the approach requires the rotational speed of the machine to be constant, which imposes a limit to several applications. The object of this chapter is to introduce a new class of processes, coined time-angle periodically correlated, which extends second-order cyclostationary processes to varying regimes. Such processes are fully characterized by a time-angle autocorrelation function and its double Fourier transform, the frequency-order spectral correlation. The estimation of the latter quantity is briefly discussed and demonstrated on a real-world vibration signal captured during a run-up.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antoniadis I, Glossiotis G (2001) Cyclostationary analysis of rolling-element bearing vibration signals. J Sound Vib 248(5):829–845

    Article  Google Scholar 

  • Antoni J, Bonnardot F, Raad A, El Badaoui M (2004) Cyclostationary modelling of rotating machine vibration signals. Mech Syst Signal Process 18:1285–1314

    Article  Google Scholar 

  • Antoni J (2007a) Cyclic spectral analysis of rolling-element bearing signals: facts and fictions. J Sound Vib 304(3–5):497–529

    Article  Google Scholar 

  • Antoni J (2007b) Cyclic spectral analysis in practice. Mech Syst Signal Process 21(2):597–630

    Article  Google Scholar 

  • Antoni J (2009) Cyclostationarity by examples. Mech Syst Signal Process 23(4):987–1036

    Article  Google Scholar 

  • Borghesani P, Pennacchi P, Ricci R, Chatterton S (2013a) Testing second order cyclostationarity in the squared envelope spectrum of non-white vibration signals. Mech Syst Signal Process 40(1):38–55

    Google Scholar 

  • Borghesani P, Pennacchi P, Chatterton S, Ricci R (2013b) The velocity synchronous discrete fourier transform for order tracking in the field of rotating. Mech Syst Signal Process 40(1):38–55

    Article  Google Scholar 

  • Capdessus C, Sidahmed M, Lacoume JL (2000) Cyclostationary processes: application in gear faults early diagnosis. Mech Syst Signal Process 14(3):371–385

    Article  Google Scholar 

  • Cioch W, Knapik O, Leśkow J (2013) Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics. Mech Syst Signal Process 38(1):55–64

    Article  Google Scholar 

  • Dehay D (1994) Spectral analysis of the covariance of the almost periodically correlated processes. Stoch Process Appl 50(2):315–330

    Article  MATH  MathSciNet  Google Scholar 

  • D’Elia G, Daher D, Antoni J (2010) A novel approach for the cyclo-non-stationary analysis of speed varying signals. In: ISMA2010 international conference on noise and vibration engineering, Leuven

    Google Scholar 

  • Gardner W (1990) Introduction to random processes, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • George V, Gaonkar G, Prasad J, Schrage D (1992) Adequacy of modeling turbulence and related effects on helicopter response. AIAA J 30(6):1468–1479

    Article  MATH  Google Scholar 

  • Hurd H (1989) Nonparametric time series analysis for periodically correlated processes. IEEE Trans InfoTheor 35(2):350–359

    MATH  MathSciNet  Google Scholar 

  • Hurd H (1991) Correlation theory of almost periodically correlated processes. J Multivar Anal 37(1):24–45

    Article  MATH  MathSciNet  Google Scholar 

  • Javorskyj I, Leśkow J, Kravets I, Isayev I, Gajecka E (2011) Linear filtration methods for statistical analysis of periodically correlated random processes—part ii: harmonic series representation. Signal Process 91(11):251–2506

    Article  Google Scholar 

  • Leśkow J (2012) Cyclostationarity and resampling for vibroacoustic signals. Acta Physica Polonica A, 121(A): A160–A163

    Google Scholar 

  • Napolitano A (2012) Generalizations of cyclostationary signal processing: spectral analysis and applications. 1st edn, Wiley, New York

    Google Scholar 

  • Raad A, Antoni J, Sidahmed M (2008) Indicators of cyclostationarity: theory and application to gear fault monitoring. Mech Syst Signal Process 22(3):574–587

    Article  Google Scholar 

  • Randall RB, Antoni J, Chobsaard S (2001) The relationship between spectral correlation and envelope analysis for cyclostationary machine signals, application to ball bearing diagnostics. Mech Syst Signal Process 15(5):945–962

    Article  Google Scholar 

  • Yavorsky I, Kravets I, Mats’Ko I (2011) Spectral analysis of stationary components of periodically correlated random processes. Radioelectron Commun Syst 54(8):451–463

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Antoni .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Proof of Eq. (17)

The key point is to carefully rewrite the interval of integration over \(\tau \) as \(\left[ {t\,-\,W/2;t\,+\,W/2} \right] \) when \(W\) grows to infinity. Thus,

$$\begin{aligned} S_{2X} \left( {v,\,f} \right)&=\mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W} \mathop \int \limits _{-W/2}^{W/2} {\mathop \int \limits _{t-W/2}^{t+W/2} {{\mathbb {E}}\left\{ {X(t)X(t-\tau )} \right\} } } \dot{\theta }(t)e^{-j2\pi v {\theta (t)}/\Theta }e^{-j2\pi f\tau }d\tau dt \nonumber \\&=\mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W}\mathop \int \limits _{-W/2}^{W/2} {\mathop \int \limits _{-W/2}^{W/2} {{\mathbb {E}}\left\{ {X(t)X(u)} \right\} } } \dot{\theta }(t)e^{-j2\pi v {\theta (t)}/\Theta }e^{-j2\pi f(t-u)}dudt \nonumber \\&=\mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W}{\mathbb {E}}\left\{ {\mathop \int \limits _{-W/2}^{W/2} {X(u)e^{j2\pi fu}du \mathop \int \limits _{-W/2}^{W/2} {X(t)} } \dot{\theta }(t)e^{-j2\pi v {\theta (t)}/\Theta }e^{-j2\pi ft}dt} \right\} \nonumber \\&=\mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W}{\mathbb {E}}\left\{ {\mathcal{F}_W \left\{ {X(t)} \right\} ^{*}\mathcal{F}_W \left\{ {X(t)\dot{\theta }(t)e^{-j2\pi v {\theta (t)}/\Theta }} \right\} } \right\} \end{aligned}$$
(A1)

1.2 Symmetric Statistics

A symmetric version of the time-angle autocorrelation function is as follows

$$\begin{aligned} R_{2X} \left( {\theta ,\tau } \right) \mathop =\limits ^{def } {\mathbb {E}}\left\{ {X\left( {t\left( \theta \right) +\tau /2} \right) X\left( {t\left( \theta \right) -\tau /2} \right) } \right\} , \end{aligned}$$
(A2)

which has the advantage of returning an even function of \(\tau \). This does not change definition (15) of the frequency-order spectral correlation, yet the counterpart of Eq. (17) requires an approximation. Indeed,

$$\begin{aligned} S_{2X} \left( {v,\,f} \right)&=\mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W} \mathop \int \limits _{-W/2}^{W/2} {\mathop \int \limits _{-W+2|t|}^{W-2|t|} {{\mathbb {E}}\left\{ {X\left( {t+\frac{\tau }{2}} \right) X\left( {t-\frac{\tau }{2}} \right) } \right\} } } \dot{\theta }(t)e^{-j2\pi v \frac{\theta (t)}{\Theta }}e^{-j2\pi f\tau }d\tau dt \nonumber \\&=\mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W} \mathop \int \limits _{-W/2}^{W/2} {\mathop \int \limits _{-W/2}^{W/2} {{\mathbb {E}}\left\{ {X(v)X(u)} \right\} } } \dot{\theta }\left( {\frac{u+v}{2}} \right) e^{-j2\pi \frac{v }{\Theta }\theta \left( {\frac{u+v}{2}} \right) }e^{-j2\pi f(v-u)}dvdu \end{aligned}$$

which cannot be factored into the product of two integrals, unless the speed variation is small enough as compared to the correlation length of the process so that

$$\begin{aligned} \dot{\theta }\left( {\frac{u+v}{2}} \right) e^{-j2\pi \frac{v }{\Theta }\theta \left( {\frac{u+v}{2}} \right) }\simeq \sqrt{\dot{\theta }\left( u \right) \dot{\theta }\left( v \right) }e^{-j2\pi \frac{v \left( {\theta \left( u \right) +\theta \left( v \right) } \right) }{2\Theta }} \end{aligned}$$
(A3)

over the whole domain where \({\mathbb {E}}\left\{ {X(v)X(u)} \right\} \) is significantly different from zero. Therefore,

$$\begin{aligned} S_{2X} \left( {v,\,f} \right) \simeq \mathop {\lim }\limits _{W\rightarrow \infty } \frac{1}{W}{\mathbb {E}}\left\{ {\mathcal{F}_W \left\{ {X(t)\dot{\theta }(t)^{\frac{1}{2}}e^{j\pi v {\theta (t)}/\Theta }} \right\} ^{*}\!\mathcal{F}_W \left\{ {X(t)\dot{\theta }(t)^{\frac{1}{2}}e^{-j2\pi v {\theta (t)}/\Theta }} \right\} } \right\} . \end{aligned}$$
(A4)

Because of the assumption required in (A3), one may prefer the exact asymmetric form (17) to the approximate symmetric form (A4).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Antoni, J., Abboud, D., Baudin, S. (2014). Time-Angle Periodically Correlated Processes. In: Chaari, F., Leśkow, J., Napolitano, A., Sanchez-Ramirez, A. (eds) Cyclostationarity: Theory and Methods. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-04187-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04187-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04186-5

  • Online ISBN: 978-3-319-04187-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics