Skip to main content

A Digital-Geometric Algorithm for Generating a Complete Spherical Surface in ℤ3

  • Conference paper
Book cover Applied Algorithms (ICAA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8321))

Included in the following conference series:

Abstract

We show that the construction of a digital sphere by circularly sweeping a digital semicircle (generatrix) around its diameter results in appearance of some holes (absentee voxels) in its spherical surface of revolution. This incompleteness calls for a proper characterization of the absentee voxels whose restoration in the surface of revolution can ensure the required completeness. In this paper, we present a characterization of the absentee voxels using certain techniques of digital geometry and show that their count varies quadratically with the radius of the semicircular generatrix. Next, we design an algorithm to fill up the absentee voxels so as to generate a spherical surface of revolution, which is complete and realistic from the viewpoint of visual perception. Test results have also been furnished to substantiate our theoretical findings. The proposed technique will find many potential applications in computer graphics and 3D imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brimkov, V.E., Barneva, R.P., Brimkov, B., de Vieilleville, F.: Offset approach to defining 3D digital lines. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 678–687. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Feschet, F., Reveillès, J.-P.: A Generic Approach for n-Dimensional Digital Lines. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 29–40. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Kenmochi, Y., Buzer, L., Sugimoto, A., Shimizu, I.: Digital planar surface segmentation using local geometric patterns. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 322–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Woo, D.M., Han, S.S., Park, D.C., Nguyen, Q.D.: Extraction of 3D Line Segment Using Digital Elevation Data. In: Proceedings of the 2008 Congress on Image and Signal Processing, CISP 2008, vol. 2, pp. 734–738. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  5. Chan, Y.T., Thomas, S.M.: Cramer-Rao lower bounds for estimation of a circular arc center and its radius. Graphical Models and Image Processing 57, 527–532 (1995)

    Article  MATH  Google Scholar 

  6. Davies, E.R.: A hybrid sequential-parallel approach to accurate circle centre location. Pattern Recognition Letters 7, 279–290 (1988)

    Article  Google Scholar 

  7. Doros, M.: On some properties of the generation of discrete circular arcs on a square grid. Computer Vision, Graphics, and Image Processing 28, 377–383 (1984)

    Article  Google Scholar 

  8. Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Sys., Man & Cybern. 4, 394–396 (1974)

    Article  MATH  Google Scholar 

  9. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recognition Letters 25, 1231–1242 (2004)

    Article  Google Scholar 

  10. Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. Journal of Mathematical Imaging and Vision 42, 1–24 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Thomas, S.M., Chan, Y.T.: A simple approach for the estimation of circular arc center and its radius. Computer Vision, Graphics, and Image Processing 45, 362–370 (1989)

    Article  Google Scholar 

  12. Yuen, P.C., Feng, G.C.: A novel method for parameter estimation of digital arc. Pattern Recognition Letters 17, 929–938 (1996)

    Article  Google Scholar 

  13. Nakamura, A., Aizawa, K.: Digital circles. Computer Vision, Graphics, and Image Processing 26, 242–255 (1984)

    Article  Google Scholar 

  14. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  15. Klette, R., Rosenfeld, A.: Digital straightness: A review. Discrete Applied Mathematics 139, 197–230 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mignosi, F.: On the number of factors of Sturmian words. Theoretical Computer Science 82, 71–84 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theoretical Computer Science 406, 24–30 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Heath-Brown, D.R.: Lattice points in the sphere. Number theory in progress, vol. II, pp. 883–892. Walter de Gruyter, Berlin (1999)

    Google Scholar 

  19. Chamizo, F., Cristóbal, E., Ubis, A.: Visible lattice points in the sphere. Journal of Number Theory 126, 200–211 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chamizo, F., Cristobal, E.: The sphere problem and the L-functions. Acta Mathematica Hungarica 135, 97–115 (2012)

    Article  MathSciNet  Google Scholar 

  21. Fomenko, O.: Distribution of lattice points over the four-dimensional sphere. Journal of Mathematical Sciences 110, 3164–3170 (2002)

    Article  MathSciNet  Google Scholar 

  22. Magyar, A.: On the distribution of lattice points on spheres and level surfaces of polynomials. Journal of Number Theory 122, 69–83 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ewell, J.A.: Counting lattice points on spheres. The Mathematical Intelligencer 22, 51–53 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tsang, K.M.: Counting lattice points in the sphere. Bulletin of the London Mathematical Society 32, 679–688 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maehara, H.: On a sphere that passes through n lattice points. European Journal of Combinatorics 31, 617–621 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Cappell, S.E., Shaneson, J.L.: Some Problems in Number Theory I: The Circle Problem (2007), http://arxiv.org/abs/math.NT/0702613

  27. Honsberger, R.: Circles, Squares, and Lattice Points. Mathematical Gems I, 117–127 (1973)

    Google Scholar 

  28. Kühleitner, M.: On lattice points in rational ellipsoids: An omega estimate for the error term. Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg 70, 105–111 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chamizo, F., Cristbal, E., Ubis, A.: Lattice points in rational ellipsoids. Journal of Mathematical Analysis and Applications 350, 283–289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chamizo, F.: Lattice points in bodies of revolution. Acta Arithmetica 85, 265–277 (1998)

    MATH  MathSciNet  Google Scholar 

  31. Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE Trans. Visualization and Computer Graphics 3, 75–86 (1997)

    Article  Google Scholar 

  32. Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Vision Geometry XIV, Electronic Imaging, San Jose (CA), USA. SPIE, vol. 6066, p. 60660C (2006)

    Google Scholar 

  33. Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 425–436. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  34. Montani, C., Scopigno, R.: Spheres-to-voxels conversion. In: Glassner, A.S. (ed.) Graphics Gems, pp. 327–334. Academic Press Professional, Inc., San Diego (1990)

    Chapter  Google Scholar 

  35. Stelldinger, P.: Image Digitization and its Influence on Shape Properties in Finite Dimensions. IOS Press (2007)

    Google Scholar 

  36. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics — Principles and Practice. Addison-Wesley, Reading (1993)

    Google Scholar 

  37. Bera, S., Bhowmick, P., Stelldinger, P., Bhattacharya, B.B.: On covering a digital disc with concentric circles in ℤ2. Theoretical Computer Science 506, 1–16 (2013)

    Article  MathSciNet  Google Scholar 

  38. Bhowmick, P., Bhattacharya, B.B.: Number theoretic interpretation and construction of a digital circle. Discrete Applied Mathematics 156, 2381–2399 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kumar, G., Sharma, N., Bhowmick, P.: Wheel-throwing in digital space using number-theoretic approach. International Journal of Arts and Technology 4, 196–215 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bera, S., Bhowmick, P., Bhattacharya, B.B. (2014). A Digital-Geometric Algorithm for Generating a Complete Spherical Surface in ℤ3 . In: Gupta, P., Zaroliagis, C. (eds) Applied Algorithms. ICAA 2014. Lecture Notes in Computer Science, vol 8321. Springer, Cham. https://doi.org/10.1007/978-3-319-04126-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04126-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04125-4

  • Online ISBN: 978-3-319-04126-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics