Skip to main content

Robust Image Restoration via Reweighted Low-Rank Matrix Recovery

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8325))

Included in the following conference series:

Abstract

In this paper, we propose a robust image restoration method via reweighted low-rank matrix recovery. In the literature, Principal Component Pursuit (PCP) solves low-rank matrix recovery problem via a convex program of mixed nuclear norm and ℓ1 norm. Inspired by reweighted ℓ1 minimization for sparsity enhancement, we propose reweighting singular values to enhance low rank of a matrix. An efficient iterative reweighting scheme is proposed for enhancing low rank and sparsity simultaneously and the performance of low-rank matrix recovery is prompted greatly. We demonstrate the utility of the proposed method on robust image restoration, including single image and hyperspectral image restoration. All of these experiments give appealing results on robust image restoration.

This work was supported by the project of National Nature Science Foundation of China (NSFC) No. 61120106003, and No. 61171119, and National High-tech R&D Program of China (863 Program) No. 2011AA010601.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transaction on Information Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  2. Candès, E., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computational Mathematics 9(6), 717–772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52(3), 471–501 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the ACM 58(3), 1–37 (2011)

    Article  Google Scholar 

  5. Zhao, K., Zhang, Z.: Successively alternate least square for low-rank matrix factorization with bounded missing data. Computer Vision and Image Understanding 114(10), 1084–1096 (2010)

    Article  Google Scholar 

  6. Li, K., Dai, Q., Xu, W., Yang, J., Jiang, J.: Three-dimensional motion estimation via matrix completion. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 539–551 (2012)

    Article  Google Scholar 

  7. Lu, X., Gong, T., Yan, P., Yuan, Y., Li, X.: Robust alternative minimization for matrix completion. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(3), 939–949 (2012)

    Article  Google Scholar 

  8. Konishi, K., Furukawa, T.: A nuclear norm heuristic approach to fractionally spaced blind channel equalization. IEEE Signal Processing Letters 18(1), 59–63 (2011)

    Article  Google Scholar 

  9. Ji, H., Huang, S., Shen, Z., Xu, Y.: Robust video restoration by joint sparse and low rank matrix approximation. SIAM Journal on Imaging Sciences 4(4), 1122–1142 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 34(11), 2233–2246 (2011)

    Article  Google Scholar 

  11. Zhang, Z., Ganesh, A., Liang, X., Ma, Y.: TILT: Transform-invariant low-rank textures. International Journal of Computer Vision 99(1), 1–24 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, Z., Matsushita, Y., Ma, Y.: Camera calibration with lens distortion from low-rank textures. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  13. Zhang, Z., Liang, X., Ma, Y.: Unwrapping low-rank textures on generalized cylindrical surfaces. In: Proceedingsof International Conference on Computer Vision (2011)

    Google Scholar 

  14. Mobahi, H., Zhou, Z., Yang, A.Y., Ma, Y.: Holistic reconstruction of urban structures from low-rank textures. In: Workshop on 3D Reconstruction and Recognition, International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  15. Yao, C., Tu, Z., Ma, Y.: Detecting texts of arbitrary orientations in natural images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  16. Liang, X., Ren, X., Zhang, Z., Ma, Y.: Repairing sparse low-rank texture. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 482–495. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low rank structure: k-t SLR. IEEE Transactions on Medical Imaging 30, 1042–1054 (2011)

    Article  Google Scholar 

  18. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization 6, 615–640 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Submitted to Mathematical Programming (UIUC Technical Report UILU-ENG-09-2215) (2009)

    Google Scholar 

  21. Yuan, X., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Pacific Journal of Optimization (2011) (forthcoming)

    Google Scholar 

  22. Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications 14(5), 877–905 (2007)

    Google Scholar 

  23. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transaction on Image Processing 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  24. Deng, Y., Dai, Q., Liu, R., Zhang, Z., Hu, S.: Low-rank structure learning via nonconvex heuristic recovery. IEEE Trans. on Neural Networks and Learning Systems 24(3), 383–396 (2013)

    Article  Google Scholar 

  25. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. In: Proceedings of IEEE International Conference on Computer Vision (2009)

    Google Scholar 

  26. Huang, J., Zhang, S., Li, H., Metaxas, D.: Composite splitting algorithms for convex optimization. Computer Vision and Image Understanding 115(12), 1610–1622 (2011)

    Article  Google Scholar 

  27. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  28. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: Postcapture control of resolution, dynamic range, and spectrum. IEEE Transaction on Image Processing 19(9), 2241–2253 (2010)

    Article  MathSciNet  Google Scholar 

  29. Zymnis, A., Kim, S.J., Skaf, J., Parente, M., Boyd, S.: Hyperspectral image unmixing via alternating projected subgradients. In: Proceedings Asilomar Conference on Signals, Systems, and Computers, pp. 1164–1168 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peng, Y., Suo, J., Dai, Q., Xu, W., Lu, S. (2014). Robust Image Restoration via Reweighted Low-Rank Matrix Recovery. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8325. Springer, Cham. https://doi.org/10.1007/978-3-319-04114-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04114-8_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04113-1

  • Online ISBN: 978-3-319-04114-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics