Skip to main content

Neurochemical Aspects of Oxidative and Nitrosative Stress

  • Chapter
  • First Online:

Abstract

Oxidative stress, which is an imbalance between ROS and RNS production and the ability of the cells to eliminate them, is caused by the production of high levels of ROS and RNS. Enhanced production of ROS and RNS play a critical role in molecular mechanism of neurodegeneration. Neurodegeneration is caused not only by ROS and RNS-mediated damage to neural membrane phospholipid, proteins, and nucleic acids, but also by the generation of variety of ARA-derived toxic lipid aldehyde species such as 4-hydroxynonenal (4-HNE), acrolein, and malondialdehyde, IspP, IsoF, and IsoK. Lipid mediators like 4-HNE contain more than one functional group, which can participate in Schiff base formation and/or Michael addition reactions. 4-HNE and its glutathione conjugates have been shown to regulate redox-sensitive transcription factors such as NF-κB and AP-1 via signaling through various protein kinase cascades. Neurodegeneration is also promoted by enhanced formation of peroxynitrite

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham P, Rabi S (2009) Protein nitration, PARP activation and NAD+ depletion may play a critical role in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis in the rat. Cancer Chemother Pharmacol 64:279–285

    CAS  PubMed  Google Scholar 

  • Adler V, Yin Z, Tew KD, Ronai Z (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18:6104–6111

    CAS  PubMed  Google Scholar 

  • Ahmed N (2005) Advanced glycation endproducts–role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    CAS  PubMed  Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383

    CAS  PubMed  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function, and inhibition. Biochem J 357:593–615

    CAS  PubMed  Google Scholar 

  • Ashton T, Young IS, Peters JR, Jones JR, Jackson SK, Davies B, Rowlands CC (1999) Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Applied Physiol 87:2032–2036

    CAS  Google Scholar 

  • Babizhayev MA, Savel’yeva EL, Moskvina SN, Yegorov YE (2010) Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior. Am J Ther 18:e209–26

    Google Scholar 

  • Bahia L, Aguiar LGKd, Villela NR, Bottino D, Bouskela E (2006) O endotélio na síndrome metabólica. Arq Bras Endocrinol Metab 50:291–303

    Google Scholar 

  • Balazy M, Iesaki T, Park JL, Jiang H, Kaminski PM, Wolin MS (2001) Vicinal Nitro-hydroxyeicosatrienoic acids: vasodilator lipids formed by reaction of nitrogen dioxide with arachidonic acid. J Pharmacol Exp Ther 299:611–619

    CAS  PubMed  Google Scholar 

  • Bailey SM, Pietsch EC, Cunningham CC (1999) Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Rad Biol Med 27:891–900

    CAS  PubMed  Google Scholar 

  • Barciszewski J, Barciszewska MZ, Siboska G, Rattan SIS, Clark BFC (1999) Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. Mol Biol Rep 26:231–238

    CAS  PubMed  Google Scholar 

  • Bashir S, Harris G, Denman MA, Blake DR, Winyard PG (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666

    CAS  PubMed  Google Scholar 

  • Baynes JW (2001) The role of AGEs in aging: causation or correlation. Exp Gerontol 36:1527–1537

    CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. Am J Physiol 271:1424–1437

    Google Scholar 

  • Bell KFS, Hardingham GE (2011) CNS peroxiredoxins and their regulation in health and disease. Antioxidants Redox Signal 14:1467–1477

    CAS  Google Scholar 

  • Benhar M, Forrester MT, Stamler JJ (2006) Nitrosative stress in the ER: a new role for S-nitrosylation in neurodegenerative diseases. ACS Chem Biol 1:355–358

    PubMed  Google Scholar 

  • Ben-Shachar D (2009) The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm 116:1383–1396

    CAS  PubMed  Google Scholar 

  • Bhakat KK, Mokkapati SK, Boldogh I, Hazra TK, Mitra S (2006) Acetylation of human 8-oxoguanine-DNA glycosylase by p300 and its role in 8-oxoguanine repair in vivo. Mol Cell Biol 26:1654–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bizzozero OA (2009) Protein carbonylation in neurodegenerative and demyelinating CNS diseases. In: Lajtha A, Banik N, Ray S (eds) Handbook of neurochemistry and molecular neurobiology. Springer, New York, pp 543–562

    Google Scholar 

  • Bizzozero OA, Dejesus G, Callahan K, Pastuszyn A (2005) Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 81:687–695

    CAS  PubMed  Google Scholar 

  • Boccardi V, Esposito A, Rizzo MR, Marfella R, Barbieri M, Paolisso G (2013) Mediterranean diet, telomere maintenance and health status among elderly. PLoS One 8:e62781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle SP, Dobson VL, Duthie SJ, Hinselwood DC, Kyle JA, Collins AR (2000) Bioavailability and efficiency of rutin as an antioxidant: a human supplementation study. Eur J Clin Nutr 54:774–782

    CAS  PubMed  Google Scholar 

  • Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005) Mitochondria: pharmacological manipulation of cell death. J Clin Invest 115:2640–2647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  • Chen W, Li Y, Li J, Han Q, Ye L, Li A (2011) Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem Toxicol 49:2439–2444

    CAS  PubMed  Google Scholar 

  • Chiueh CC (1999) Neuroprotective properties of nitric oxide. Ann NY Acad Sci 890:3012–3111

    Google Scholar 

  • Ciueh CC, Rauhala P (1999) The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications. Free Rad Res 31:641–650

    Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2010) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    PubMed  PubMed Central  Google Scholar 

  • Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, McLoughlin RM, Giddings JC, Lewis MJ, Haslam RJ, Freeman BA, O’Donnell VB (2002) Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem 277:5832–5840

    CAS  PubMed  Google Scholar 

  • Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance? Clin Chim Acta 365:30–49

    CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    CAS  PubMed  Google Scholar 

  • Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR, Batthyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA, Chen YE (2006) Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J Biol Chem 281:35686–35698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis JM, Hahn WS, Stone MD, Inda JJ, Droullard DJ, Kuzmicic JP, Donoghue MA, Long EK, Armien AG, Lavandero S, Arriaga E, Griffin TJ, Bernlohr DA (2012) Protein carbonylation and adipocyte mitochondrial function. J Biol Chem 287:32967–329680

    CAS  PubMed  Google Scholar 

  • Damsma GE, Cramer P (2009) Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J Biol Chem 284:31658–31663

    CAS  PubMed  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    CAS  PubMed  Google Scholar 

  • Dhakshinamoorthy S, Porter AG (2004) Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem 279:20096–20107

    CAS  PubMed  Google Scholar 

  • Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B (1999) The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem 72:2523–2530

    CAS  PubMed  Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    CAS  PubMed  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Durand T, Cracowski T, Berdeaux O (2005) Isoprostanes, biomarkers of lipid peroxidation in humans. Part 1. Nomenclature and synthesis. Pathol Biol (Paris) 53:349–355

    CAS  Google Scholar 

  • Dworakowski R, Anilkumar N, Zhang M, Shah AM (2006) Redox signalling involving NADPH oxidase-derived reactive oxygen species. Biochem Soc Transactions 34:960–964

    CAS  Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cowthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    CAS  PubMed  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    CAS  PubMed  Google Scholar 

  • Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Medicinal Chem 10:1723–1740

    CAS  Google Scholar 

  • Farooqui AA (2009) Beneficial effects of fish oil on human brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2012a) Generation of reactive oxygen species in the brain: signaling for neural cell surval or suicide. In: Farooqui T, Farooqui AA (eds) Oxidative stress in vertebrates and invertebrates: molecular aspects of cell signaling. Wiley, Hoboken, pp. 3–15

    Google Scholar 

  • Farooqui AA (2012b) Phytochemicals, signal transduction, and neurological disorders. Springer, New York

    Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York

    Google Scholar 

  • Fernández-Checa JC, Kaplowitz N, García-Ruiz C, Colell A (1998) Mitochondrial glutathione: importance and transport. Seminars in Liver Dis 18:389–401

    Google Scholar 

  • Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074

    CAS  PubMed  Google Scholar 

  • Floor E, Wetzel MG (1998) Increased protein oxidation in human sustantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    CAS  PubMed  Google Scholar 

  • Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d’Ischia M (2008) Nitro-fatty acid formation and signaling. J Biol Chem 283:15515–15519

    CAS  PubMed  Google Scholar 

  • Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    PubMed  Google Scholar 

  • Gackowski D, Rozalski R, Siomek A, Dziaman T, Nicpon K, Klimarczyk M, Araszkiewicz A, Olinski R (2008) Oxidative stress and oxidative DNA damage is characteristic for mixed Alzheimer disease/vascular dementia. J Neurol Sci 266:57–62

    CAS  PubMed  Google Scholar 

  • Gardner A, Boles RG (2010) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 35:730–743

    PubMed  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Cir Res 107:1058–1070

    CAS  Google Scholar 

  • Gibson ME, Byung HH, Choi J, Knudson CM, Korsmeyer SJ, Parsdanian M, Holtzman DM (2001) BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Medicine 7:644–655

    CAS  Google Scholar 

  • Gorczynski MJ, Smitherman PK, Akiyama TE, Wood HB, Berger JP, King SB, Morrow CS (2009) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by nitroalkene fatty acids: importance of nitration position and degree of unsaturation. J Med Chem 52:4631–4639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Dee CM, Shen J (2011) Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci (Schol Ed) 3:1216–1231

    Google Scholar 

  • Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J (2012) Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 120:147–156

    CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  • Hamada N, Tanaka A, Fujita Y, Itoh T, Ono Y, Kitagawa Y, Tomimori N, Kiso Y, Akao Y, Nazawa Y, Ito M (2011) Involvement of heme oxygenase-1 induction via Nrf2/ARE activation in protection against H2O2-induced PC12 cell death by a metabolite of sesamin contained in sesame seeds. Bioorganic Med Chem 19:1959–1965

    CAS  Google Scholar 

  • He J, Wang T, Wang P, Han P, Chen C (2007) A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint. J Neurochem 102:1863–1874

    CAS  PubMed  Google Scholar 

  • Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33:1375–1377

    CAS  PubMed  Google Scholar 

  • Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277:42769–42774

    CAS  PubMed  Google Scholar 

  • Huhmer AF, Nishida CR, Ortiz deMPR, Schoneich C (1997) Inactivation of the inducible nitric oxide synthase by peroxynitrite. Chem Res Toxicol 10:618–626

    CAS  PubMed  Google Scholar 

  • Hwang J, Lee KE, Lim JY, Park S (2009) Nitrated fatty acids prevent TNFα-stimulated inflammatory and atherogenic responses in endothelial cells. Biochem Biophys Res Commun 387:633–640

    CAS  PubMed  Google Scholar 

  • Iles KE, Wright MM, Cole MP, Welty NE, Ware LB, Matthay MA, Schopfer FJ, Baker PR, Agarwal A, Freeman BA (2009) Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid mediates protective effects through regulation of the ERK pathway. Free Radic Biol Med 46:866–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Kajkenova O, Feuers RJ, Udupa KB, Desai VG, Epstein J, Hart RW, Lipschitz DA (1998) Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils. J Gerontol A Biol Sci Med Sci 53:169–175

    Google Scholar 

  • Jain K, Siddam A, Marathi A, Roy U, Falck JR, Balazy M (2008) The mechanism of oleic acid nitration by *NO(2). Free Rad Biol Med 45:269–283

    CAS  PubMed  Google Scholar 

  • Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191–296

    CAS  PubMed  Google Scholar 

  • Kang Y, Viswanath V, Jha N, Qiao X, Mo JQ, Andersen JK (1999) Brain gamma-glutamyl cysteine synthetase (GCS) mRNA expression patterns correlate with regional-specific enzyme activities and glutathione levels. J Neurosci Res 58:436–441

    CAS  PubMed  Google Scholar 

  • Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Ann Rev Pharmacol Toxicol 47:89–116

    CAS  Google Scholar 

  • Kim W, Hudson BI, Moser B, Guo J, Rong LL, Lu Y, Qu W, Lalla E, Lerner S, Chen Y, Yan SS, D’Agati V, Naka Y, Ramasamy R, Herold K, Yan SF, Schmidt AM (2005) Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann NY Acad Sci 1043:553–561

    CAS  PubMed  Google Scholar 

  • Kinsella BT, O’Mahony DJ, Fitzgerald GA (1997) The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther 281:957–964

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    CAS  PubMed  Google Scholar 

  • Koppenol WH (2001) 100 years of peroxynitrite chemistry and 11 years of peroxynitrite biochemistry. Redox Rep 6:339–341

    CAS  Google Scholar 

  • Lahaie I, Hardy P, Hou X, Hassessian H, Asselin P, Lachapelle P, Almazan G, Varma DR, Morrow JD, Roberts LJ II, Chemtob S (1998) A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F on retinal vessels. Am J Physiol 274:1406–1416

    Google Scholar 

  • Lee SH, Blair IA (2001) Oxidative DNA damage and cardiovascular disease. Trends Cardiovasc Med 11:148–155

    CAS  PubMed  Google Scholar 

  • Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA (2003a) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278:12029–12038

    CAS  Google Scholar 

  • Lee JM, Shih AY, Murphy TH, Johnson JA (2003b) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278:37948–37956

    CAS  Google Scholar 

  • Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW (1998) Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol 274:453–461

    Google Scholar 

  • Leon L, Jeannin JF, Bettaieb A (2008) Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 19:77–83

    CAS  PubMed  Google Scholar 

  • Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524

    CAS  PubMed  Google Scholar 

  • Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    CAS  PubMed  Google Scholar 

  • Li H, Meininger CJ, Hawker JR Jr, Haynes TE, Kepka-Lenhart D, Mistry SK, Morris SM Jr, Wu G (2001) Regulatory role of arginase I and II in nitric oxide, polyamine, and proline synthesis in endothelial cells. Am J Physiol Endocrinol Metab 280:E75–E82

    Google Scholar 

  • Li Y, Zhang J, Schopfer FJ, Martynowski D, Garcia-Barrio MT, Kovach A, Suino-Powell K, Baker PR, Freeman BA, Chen YE, Xu HE (2008) Molecular recognition of nitrated fatty acids by PPARgamma. Nat Struct Mol Biol 15:865–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DG, Sweeney S, Bloodsworth A, White CR, Chumley PH, Krishna NR, Schopfer F, O’Donnell VB, Eiserich JP, Freeman BA (2002) Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc Natl Acad Sci USA 99:15941–15946

    CAS  PubMed  Google Scholar 

  • Lima ES, Bonini MG, Augusto O, Barbeiro HV, Souza HP, Abdalla DS (2005) Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic Biol Med 39:532–539

    CAS  PubMed  Google Scholar 

  • Lin J, Epel E, Blackburn E (2012) Telomeres and lifestyle factors: roles in cellular aging. Mutat Res 730:85–89

    CAS  Google Scholar 

  • Liu D, Croteau DL, Souza-Pinto N, Pitta M, Tian J, Wu C, Jiang H, Mustafa K, Keijzers G, Bohr VA, Mattson MP (2010) Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions. J Cereb Blood Flow Metab 31:680–692

    PubMed  Google Scholar 

  • Liverman CS, Cui L, Yong C, Choudhuri R, Klein RM, Welch KM, Berman NE (2004) Response of the brain to oligemia: gene expression, c-Fos, and Nrf2 localization. Brain Res Mol Brain Res 126:57–66

    CAS  Google Scholar 

  • Longoni B, Boschi E, Demontis GC, Marchiafava PL, Mosca F (1999) Regulation of bcl-2 protein expression during oxidative stress in neuronal and endothelial cells. Biochem Biophy Res Commun 260:522–526

    CAS  Google Scholar 

  • Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35:7497–7504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284:723–727

    CAS  PubMed  Google Scholar 

  • Lu J, Liu Y (2010) Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast. EMBO J 29:398–409

    CAS  PubMed  Google Scholar 

  • Madigan M, Zuckerbraun B (2013) Therapeutic potential of the nitrite-generated no pathway in vascular dysfunction. Front Immunol 4:174

    PubMed  PubMed Central  Google Scholar 

  • Matthews RT, Beal MF (1996) Increased 3-nitrotyrosine in brains of Apo E-deficient mice. Brain Res 718:181–184

    CAS  PubMed  Google Scholar 

  • Méndez JD, Xie J, Aguilar-Hernández M, Méndez-Valenzuela V (2010) Trends in advanced glycation end products research in diabetes mellitus and its complications. Mol Cell Biochem 341:33–41

    PubMed  Google Scholar 

  • Mi L, Di P, Chung FL (2011) Proteins as binding targets of isothiocyanates in cancer prevention. Carcinogenesis 32:1405–1413

    CAS  PubMed  Google Scholar 

  • Milne GL, Gao B, Terry ES, Zackert WL, Sanchez SC (2013) Measurement of F2- isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Rad Biol Med 59:36–44

    CAS  PubMed  Google Scholar 

  • Minamino T, Komuro I (2008) Role of telomeres in vascular senescence. Front Biosci 13:2971–2979

    CAS  PubMed  Google Scholar 

  • Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    CAS  PubMed  Google Scholar 

  • Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    CAS  PubMed  Google Scholar 

  • Montine TJ, Montine KS, Reich EE, Terry ES, Porter NA, Morrow JD (2003) Antioxidants significantly affect the formation of different classes of isoprostanes and neuroprostanes in rat cerebral synaptosomes. Biochem Pharmacol 65:611–617

    CAS  PubMed  Google Scholar 

  • Morales-Ruiz T, Birincioglu M, Jaruga P, Rodriguez H, Roldan-Arjona T, Dizdaroglu M (2003) Arabidopsis thaliana Ogg1 protein excises 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from oxidatively damaged DNA containing multiple lesions. BioChemistry 42:3089–3095

    CAS  PubMed  Google Scholar 

  • Moore KP, Darley-Usmar V, Morrow J, Roberts LJ (1995) II Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite. Circ Res 77:335–341

    CAS  PubMed  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064–49073

    CAS  PubMed  Google Scholar 

  • Murakami A (2013) Modulation of protein quality control systems by food phytochemicals. J Clin Biochem Nutr 52:215–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K (2007) Oxidative damage in nucleic acids and Parkinson’s disease. J Neurosci Res 85:919–934

    CAS  PubMed  Google Scholar 

  • Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    CAS  PubMed  Google Scholar 

  • Naidu S, Vijayan V, Santoso S, Kietzmann T, Immenschuh S (2009) Inhibition and genetic deficiency of p38 MAPK up-regulates heme oxygenase-1 gene expression via Nrf2. J Immunol 182:7048–7057

    CAS  PubMed  Google Scholar 

  • Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide 14:109–121

    CAS  PubMed  Google Scholar 

  • Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M, Aizawa S, Tanaka H, Kataoka K, Watanabe H, Handa H (2002) Spatial redox regulation of a critical cysteine residue of NF-kappa B in vivo. J Biol Chem 277(46):44548–44556

    CAS  PubMed  Google Scholar 

  • Nouhi F, Tusi SK, Abdi A, Khodagholi F (2011) Dietary supplementation with tBHQ, an Nrf2 stabilizer molecule, confers neuroprotection against apoptosis in amyloid β-injected rat. Neurochem Res 36:870–878

    CAS  PubMed  Google Scholar 

  • Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropath 118:151–166

    CAS  PubMed  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  Google Scholar 

  • Papaiahgari S, Zhang Q, Kleeberger SR, Cho HY, Reddy SP (2006) Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid Redox Signal 8:43–52

    CAS  PubMed  Google Scholar 

  • Patel P, Diczfalusy U, Dzeletovic S, Wilson MT, Darley-Usmar VM (1996) Formation of oxysterols during oxidation of low density lipoprotein by peroxynitrite, myoglobin, and copper. J Lipid Res 37:2361–2371

    CAS  PubMed  Google Scholar 

  • Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exper Mol Pathol 83:84–92

    CAS  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    CAS  PubMed  Google Scholar 

  • Phillips DC, Dias HK, Kitas GD, Griffiths HR (2010) Aberrant reactive oxygen and nitrogen species generation in rheumatoid arthritis (RA): causes and consequences for immune function, cell survival, and therapeutic intervention. Antioxid Redox Signal 12:743–785

    CAS  PubMed  Google Scholar 

  • Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D, Lamas S (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. BioChemistry 40:14134–14142

    CAS  PubMed  Google Scholar 

  • Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182

    CAS  PubMed  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    CAS  Google Scholar 

  • Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    CAS  PubMed  Google Scholar 

  • Pratico D, Smyth EM, Violi F, FitzGerald GA (1997) Local amplification of platelet function by 8-Epi prostaglandin F2alpha is not mediated by thromboxane receptor isoforms. J Biol Chem 271:14916–14924

    Google Scholar 

  • Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radi R (2009) Peroxynitrite and reactive nitrogen species: the contribution of ABB in two decades of research. Arch Biochem Biophys 484:111–113

    CAS  PubMed  Google Scholar 

  • Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    CAS  PubMed  Google Scholar 

  • Radak Z, Boldogh I (2010) 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Rad Biol Med 49:587–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropath Exp Neurol 66:75–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Gomez M, Kwak MK, Dolan PM, et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415

    CAS  PubMed  Google Scholar 

  • Reed TT, Pierce WM Jr, Turner DM, Markesbery WR, Butterfield DA (2009) Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J Cell Mol Med 13(8B):2019–2029

    PubMed  PubMed Central  Google Scholar 

  • Roberts LJ II, Fessel JP, Davies SS (2005) The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Brain Pathol 15:143–148

    CAS  PubMed  Google Scholar 

  • Russell DW (2000) Oxysterol biosynthetic enzymes. Biochim Biophys Acta 1529:126–135

    CAS  PubMed  Google Scholar 

  • Sawa T, Ohshima H (2006) Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide 14:91–100

    CAS  PubMed  Google Scholar 

  • Schneider C, Tallman KA, Porter NA, Brash AR (2001) Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem 276:20831–20838

    CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    CAS  PubMed  Google Scholar 

  • Schroepfer GJ Jr (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev 80:361–554

    CAS  PubMed  Google Scholar 

  • Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA 102:2340–2345

    CAS  PubMed  Google Scholar 

  • Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005a) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280:22925–22936

    CAS  Google Scholar 

  • Shih AY, Li P, Murphy TH (2005b) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    CAS  Google Scholar 

  • Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P (2010) Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Rad Res 44:1267–1288

    CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1995) Radical AGEing in Alzheimer’s disease. Trends Neurosci 18:172–176

    CAS  PubMed  Google Scholar 

  • Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571

    CAS  PubMed  Google Scholar 

  • Stadler K, Bonini MG, Dallas S, Jiang J, Radi R, Mason RP, Kadiiska MB (2008) Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med 45:866–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtman ER, Berlett BS (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:17201–17211

    CAS  PubMed  Google Scholar 

  • Stadtman ER, Van RH, Richardson A, Wehr NB, Levine RL (2005) Methionine oxidation and aging. Biochim Biophys Acta 1703:135–140

    CAS  PubMed  Google Scholar 

  • Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16:435–452

    CAS  PubMed  Google Scholar 

  • Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    CAS  Google Scholar 

  • Stępkowski TM, Kruszewski MK (2011) Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Rad Biol Med 50:1186–1195

    PubMed  Google Scholar 

  • Sun X, Erb H, Murphy TH (2005) Coordinate regulation of glutathione metabolism in astrocytes by Nrf2. Biochem Biophys Res Commun 326:371–377

    CAS  PubMed  Google Scholar 

  • Sun GY, Horrocks LA, Farooqui AA (2007) The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    CAS  PubMed  Google Scholar 

  • Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD (2011) KPNA6 (Importin α7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol 31:1800–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Yasui M, Geacintov NE, Shafirovich V, Shibutani S (2005) Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine. BioChemistry 44:9238–9245

    CAS  PubMed  Google Scholar 

  • Szabo E, Virag L, Bakondi E, Gyure L, Hasko G, Bai P, Hunyadi J, Gergely P, Szabo C (2001) Peroxynitrite production, DNA breakage, and poly(ADP-ribose) polymerase activation in a mouse model of oxazolone-induced contact hypersensitivity. J Invest Dermatol 117:74–80

    CAS  PubMed  Google Scholar 

  • Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H, Yamamoto M (2012) Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci USA 109:13561–13566

    CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Sainz R, Mayo JC, Alvares FL, Reiter RJ (2003) Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin Ther Patents 13:1671–1684

    Google Scholar 

  • Tanaka M, Chock PB, Stadtman ER (2007) Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci USA 104:66–71

    CAS  PubMed  Google Scholar 

  • Thannickal VJ, Fanburg B (2003) The concept of compartmentalization in signaling by reactive oxygen species. In: Forman HJ, Fukuto J, Torres M (eds) Signal transduction by reactive oxygen and nitrogen species: pathways and chemical principles. Kluwer Academic Publishers, Dordrecht, pp. 291–310

    Google Scholar 

  • Thornalley PJ (1993) Modification of the glyoxalase system in disease processes and prospects for therapeutic strategies. Biochem Soc Trans 21:531–534

    CAS  PubMed  Google Scholar 

  • Toledano MB, Leonard WJ (1991) Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 88:4328–4332

    CAS  PubMed  Google Scholar 

  • Trostchansky A, Rubbo H (2008) Nitrated fatty acids: mechanisms of formation, chemical characterization, and biological properties. Free Rad Biol Med 44:1887–1896

    CAS  PubMed  Google Scholar 

  • Trostchansky A, Souza JM, Ferreira A, Ferrari M, Blanco F, Trujillo M, Castro D, Cerecetto H, Baker PR, O’Donnell VB, Rubbo H (2007) Synthesis, isomer characterization,and anti-inflammatory properties of nitroarachidonate. Biochemistry 46:4645–4653

    CAS  PubMed  Google Scholar 

  • Tufekci KU, Civi Bayin E, Genc S, GEnc K (2011) The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:314082

    PubMed  PubMed Central  Google Scholar 

  • Uehara T (2007) Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxidants Redox Signal 9:597–601

    CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  • Virarkar M, Alappat L, Bradford OG, Awad AB (2013) L-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit Rev Food Sci 53:1157–1167

    CAS  Google Scholar 

  • Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharmaceut Design 12:3521–3533

    CAS  Google Scholar 

  • Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y, Dore S, Cao W (2012) Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 52:928–936

    CAS  PubMed  Google Scholar 

  • Wink D, Kasprzak K, Maragos C, Elespuru R, Misra M, Dunams T, Cebula T, Koch W, Andrews A, Allen J, Keefer L (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254:1001–1003

    CAS  PubMed  Google Scholar 

  • Wright MM, Kim J, Hock TD, Leitinger N, Freeman BA, Agarwal A (2009) Human haem oxygenase-1 induction by nitro-linoleic acid is mediated by cAMP, AP-1 and E-box response element interactions. Biochem J 422:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Venkatarangan L, Wishnok JS, Tannenbaum SR (2005) Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite. Chem Res Toxicol 18:1849–1857

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A. (2014). Neurochemical Aspects of Oxidative and Nitrosative Stress. In: Inflammation and Oxidative Stress in Neurological Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-04111-7_6

Download citation

Publish with us

Policies and ethics