Skip to main content

Notes on the Simplification of the Morse-Smale Complex

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The Morse-Smale complex can be either explicitly or implicitly represented. Depending on the type of representation, the simplification of the Morse-Smale complex works differently. In the explicit representation, the Morse-Smale complex is directly simplified by explicitly reconnecting the critical points during the simplification. In the implicit representation, on the other hand, the Morse-Smale complex is given by a combinatorial gradient field. In this setting, the simplification changes the combinatorial flow, which yields an indirect simplification of the Morse-Smale complex. The topological complexity of the Morse-Smale complex is reduced in both representations. However, the simplifications generally yield different results. In this chapter, we emphasize properties of the two representations that cause these differences. We also provide a complexity analysis of the two schemes with respect to running time and memory consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the idea of reversing the flow along a separation line was also used to modify a scalar field based on a simplified contour tree [23].

References

  1. U. Bauer, Persistence in discrete Morse theory. PhD thesis, University of Göttingen, 2011

    Google Scholar 

  2. T. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, Y. Wang, Persistent heat signature for pose-oblivious matching of incomplete models. CGF 29(5), 1545–1554 (2010)

    Google Scholar 

  3. H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise linear 3-manifolds, in 19th Annual Proceedings of SoCG, San Diego (ACM, New York, 2003), pp. 361–370

    Google Scholar 

  4. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse complexes for piecewise linear 2-manifolds. Discret. Comput. Geom. 30, 87–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Forman, A user’s guide to discrete Morse theory, in Proceedings of the 2001 International Conference on Formal Power Series and Algebraic Combinatorics, USA. Advances in Applied Mathematics (2001)

    Google Scholar 

  7. D. Günther, Topological analysis of discrete scalar data. PhD thesis, Saarland University, Saarbrücken, Germany, 2012

    Google Scholar 

  8. D. Günther, J. Reininghaus, H. Wagner, I. Hotz, Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28, 959–969 (2012)

    Article  Google Scholar 

  9. A. Gyulassy, Combinatorial construction of Morse-Smale complexes for data analysis and visualization. PhD thesis, University of California, Davis, 2008

    Google Scholar 

  10. A. Gyulassy, P.-T. Bremer, V. Pascucci, B. Hamann, Practical considerations in Morse-Smale complex computation, in Proceedings of the TopoInVis, Zurich (Springer, 2011), pp. 67–78

    Google Scholar 

  11. A. Gyulassy, V. Natarajan, V. Pascucci, B. Hamann, Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. TVCG 13, 1440–1447 (2007)

    Google Scholar 

  12. M. Joswig, M.E. Pfetsch, Computing optimal Morse matchings. SIAM J. Discret. Math. 20(1), 11–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. H. King, K. Knudson, N. Mramor, Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Lewiner, Geometric discrete Morse complexes. PhD thesis, PUC-Rio, 2005

    Google Scholar 

  15. T. Lewiner, H. Lopes, G. Tavares, Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)

    MATH  Google Scholar 

  17. M. Morse, The Calculus of Variations in the Large. Colloquium Publications, vol. 18 (AMS, New York, 1934)

    Google Scholar 

  18. J. Reininghaus, Computational discrete Morse theory. PhD thesis, Freie Universität, 2012

    Google Scholar 

  19. V. Robins, P.J. Wood, A.P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE PAMI 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  20. N. Shivashankar, V. Natarajan, Parallel computation of 3D Morse-Smale complexes. Comput. Graph. Forum 31(3pt1), 965–974 (2012)

    Google Scholar 

  21. S. Smale, On gradient dynamical systems. Ann. Math. 74, 199–206 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, On the applicability of topological methods for complex flow data, in Proceedings of the TopoInVis, Grimma (Springer, 2007), pp. 105–120

    Google Scholar 

  23. G. Weber, S. Dillard, H. Carr, V. Pascucci, B. Hamann, Topology-controlled volume rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 330–341 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported and funded by the Digiteo unTopoVis project, the TOPOSYS project FP7-ICT-318493-STREP, and MPC-VCC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Günther, D., Reininghaus, J., Seidel, HP., Weinkauf, T. (2014). Notes on the Simplification of the Morse-Smale Complex. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_9

Download citation

Publish with us

Policies and ethics