Skip to main content

Clear and Compress: Computing Persistent Homology in Chunks

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We present a parallel algorithm for computing the persistent homology of a filtered chain complex. Our approach differs from the commonly used reduction algorithm by first computing persistence pairs within local chunks, then simplifying the unpaired columns, and finally applying standard reduction on the simplified matrix. The approach generalizes a technique by Günther et al., which uses discrete Morse Theory to compute persistence; we derive the same worst-case complexity bound in a more general context. The algorithm employs several practical optimization techniques, which are of independent interest. Our sequential implementation of the algorithm is competitive with state-of-the-art methods, and we further improve the performance through parallel computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The running time of the third step could be lowered to g ω, where ω is the matrix-multiplication exponent, using the method of [17].

References

  1. U. Bauer, Persistence in discrete Morse theory. PhD thesis, Georg-August-Universität Göttingen, 2011

    Google Scholar 

  2. U. Bauer, M. Kerber, J. Reininghaus, PHAT: persistent homology algorithm toolbox. http://phat.googlecode.com/

  3. U. Bauer, C. Lange, M. Wardetzky, Optimal topological simplification of discrete functions on surfaces. Discret. Comput. Geom. 47, 347–377 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. J.-D. Boissonnat, T.K. Dey, C. Maria, The compressed annotation matrix: an efficient data structure for computing persistent cohomology, in Algorithms – ESA 2013, Sophia Antipolis, ed. by H.L. Bodlaender, G.F. Italiano. Volume 8125 of Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 2013), pp. 695–706

    Google Scholar 

  5. F. Chazal, D. Cohen-Steiner, L. Guibas, F. Memoli, S. Oudot, Gromov–Hausdorff stable signatures for shapes using persistence, in Eurographics Symposium on Geometry Processing, Berlin, 2009, pp. 1393–1403

    Google Scholar 

  6. C. Chen, M. Kerber, An output-sensitive algorithm for persistent homology, in Proceedings of the 27th Annual Symposium on Computational Geometry, Paris, 2011, pp. 207–215

    Google Scholar 

  7. C. Chen, M. Kerber, Persistent homology computation with a twist, in 27th European Workshop on Computational Geometry (EuroCG), Morschach, 2011, pp. 197–200. Extended abstract

    Google Scholar 

  8. V. de Silva, D. Morozov, M. Vejdemo-Johansson, Dualities in persistent (co)homology. Inverse Probl. 27, 124003 (2011)

    Article  Google Scholar 

  9. H. Edelsbrunner, J. Harer, Computational Topology, An Introduction (American Mathematical Society, Providence, 2010)

    MATH  Google Scholar 

  10. H. Edelsbrunner, C.-P. Heisenberg, M. Kerber, G. Krens, The medusa of spatial sorting: topological construction (2012). arXiv:1207.6474

    Google Scholar 

  11. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discret. Comput. Geom. 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Forman, Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Günther, J. Reininghaus, H. Wagner, I. Hotz, Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 1–11 (2012)

    Google Scholar 

  14. A.B. Lee, K.S. Pedersen, D. Mumford, The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54, 83–103 (2003)

    Article  MATH  Google Scholar 

  15. R.H. Lewis, A. Zomorodian, Multicore homology (2012). Unpublished manuscript

    Google Scholar 

  16. D. Lipsky, P. Skraba, M. Vejdemo-Johansson, A spectral sequence for parallelized persistence (2011). arXiv:1112.1245

    Google Scholar 

  17. N. Milosavljević, D. Morozov, P. Škraba, Zigzag persistent homology in matrix multiplication time, in Proceedings of the 27th Annual Symposium on Computational Geometry, Paris, 2011, pp. 216–225

    Google Scholar 

  18. D. Morozov, Dionysus: a C\(++\) library for computing persistent homology. http://www.mrzv.org/software/dionysus/

  19. D. Morozov, Persistence algorithm takes cubic time in the worst case, in BioGeometry News (Duke Computer Science, Durham, 2005)

    Google Scholar 

  20. A. Zomorodian, G. Carlsson, Computing persistent homology. Discret. Comput. Geom. 33, 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Chao Chen, Herbert Edelsbrunner, and Hubert Wagner for helpful discussions. This research is partially supported by the TOPOSYS project FP7-ICT-318493-STREP and the Max Planck Center for Visual Computing and Communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bauer, U., Kerber, M., Reininghaus, J. (2014). Clear and Compress: Computing Persistent Homology in Chunks. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_7

Download citation

Publish with us

Policies and ethics