Skip to main content

A Comparison of Finite-Time and Finite-Size Lyapunov Exponents

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Finite-time and finite-size Lyapunov exponents are related concepts that have been used for the purpose of identifying transport structures in time-dependent flow. The preference for one or the other concept seems to be based more on a tradition within a scientific community than on proven advantages. In this study, we demonstrate that with the two concepts highly similar visualizations can be produced, by maximizing a simple similarity measure. Furthermore, we show that results depend crucially on the numerical implementation of the two concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, A. Vulpiani, Growth of noninfinitesimal perturbations in turbulence. Phys. Rev. Lett. 77, 1262–1265 (1996)

    Article  Google Scholar 

  2. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov characteristic exponent for smooth dynamical systems and hamiltonian systems: a method for computing all of them. Mechanica 15, 9–20 (1980)

    Article  MATH  Google Scholar 

  3. J. Berntsen, User guide for a modesplit σ-coordinate ocean model. Version 4.1. Technical report, Department of Mathematics, University of Bergen, Norway, 2004

    Google Scholar 

  4. F.J. Beron-Vera, M.J. Olascoaga, M.G. Brown, H. Kocak, I.I. Rypina, Invariant-tori-like lagrangian coherent structures in geophysical flows. Chaos 20(1), 1–13 (2010)

    Article  MathSciNet  Google Scholar 

  5. G. Boffetta, G. Lacorata, G. Redaelli, A. Vulpiani, Detecting barriers to transport: a review of different techniques. Physica D 159, 58–70 (2001)

    Article  MATH  Google Scholar 

  6. A. Bower, A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr. 21, 173–171 (1991)

    Article  Google Scholar 

  7. S. Brunton, C. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos 20(017503), 017503-1–017503-12 (2010)

    Google Scholar 

  8. C. Coulliette, F. Lekien, J.D. Paduan, G. Haller, J.E. Marsden, Optimal pollution mitigation in monterey bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol. 41(18), 6562–6572 (2007)

    Article  Google Scholar 

  9. F. d’Ovidio, V. Fernández, E. Hernández-García, C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31(17), L17203-1–L17203-4 (2004). doi:10.1029/2004GL020328

    Google Scholar 

  10. R. Fuchs, B. Schindler, R. Peikert, Scale-space approaches to FTLE ridges, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs (Springer, New York, 2012), pp. 283–296

    Chapter  Google Scholar 

  11. I. Goldhirsch, P.L. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D 27(3), 311–337 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Haller, Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10(1), 99–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. I. Hernández-Carracos, C. López, E. Hernández-García, A. Turiel, How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics? Ocean Model. 36(3–4), 208–218 (2011)

    Article  Google Scholar 

  15. B. Joseph, B. Legras, Relation between kinematic boundaries, stirring, and barriers for the antarctic polar vortex. J. Atmos. Sci. 59, 1198–1212 (2002)

    Article  Google Scholar 

  16. D. Karrasch, G. Haller, Do Finite-Size Lyapunov Exponents Detect Coherent Structures? (2013). http://arxiv.org/abs/1307.7888

  17. J. Kasten, C. Petz, I. Hotz, B. Noack, H.C. Hege, Localized finite-time lyapunov exponent for unsteady flow analysis, in Vision Modeling and Visualization, vol. 1, ed. by M. Magnor, B. Rosenhahn, H. Theisel (Universität Magdeburg, Inst. f. Simulation u. Graph., 2009), pp. 265–274

    Google Scholar 

  18. T.Y. Koh, B. Legras, Hyperbolic lines and the stratospheric polar vortex. Chaos 12(2), 382–394 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. A.J. Mariano, A. Griffa, T.M. Özgökmen, E. Zambianchi, Lagrangian analysis and predictability of coastal and ocean dynamics 2000. J. Atmos. Ocean. Technol. 19(7), 1114–1126 (2002)

    Article  Google Scholar 

  20. A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matković, H. Hauser, The state of the art in topology-based visualization of unsteady flow. Comput. Graph. Forum 30(6), 1789–1811 (2011)

    Article  Google Scholar 

  21. F. Sadlo, R. Peikert, Efficient visualization of lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Vis. Comput. Graph. 13(5), 1456–1463 (2007)

    Article  Google Scholar 

  22. R. Samelson, Fluid exchange across a meandering jet. J. Phys. Oceanogr. 22, 431–440 (1992)

    Article  Google Scholar 

  23. B. Schindler, R. Peikert, R. Fuchs, H. Theisel, Ridge concepts for the visualization of lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II, ed. by R. Peikert, H. Hauser, H. Carr, R. Fuchs (Springer, New York, 2012), pp. 221–236

    Chapter  Google Scholar 

  24. S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenom. 212(3–4), 271–304 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Üffinger, F. Sadlo, M. Kirby, C.D. Hansen, T. Ertl, FTLE computation beyond first order approximation, in Eurographics Short Papers, ed. by C. Andujar, E. Puppo, Eurographics Association, Cagliari, pp. 61–64, 2012

    Google Scholar 

  26. S. Wiggins, The dynamical systems approach to lagrangian transport in oceanic flows. Annu. Rev. Fluid Mech. 37, 295–328 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank Tomas Torsvik, Uni Research, Uni Computing (Bergen, Norway), for the tidal flow data. This work was funded in part by the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 226042 (project SemSeg) and the Swiss National Science Foundation, under grant number 200020_140556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Peikert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peikert, R., Pobitzer, A., Sadlo, F., Schindler, B. (2014). A Comparison of Finite-Time and Finite-Size Lyapunov Exponents. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_12

Download citation

Publish with us

Policies and ethics