Skip to main content

Measuring the Distance Between Merge Trees

  • Conference paper
  • First Online:
Topological Methods in Data Analysis and Visualization III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Merge trees represent the topology of scalar functions. To assess the topological similarity of functions, one can compare their merge trees. To do so, one needs a notion of a distance between merge trees, which we define. We provide examples of using our merge tree distance and compare this new measure to other ways used to characterize topological similarity (bottleneck distance for persistence diagrams) and numerical difference (L -norm of the difference between functions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.W. Bethel, M. Howison, Multi-core and many-core shared-memory parallel raycasting volume rendering optimization and tuning. Int. J. High Perform. Comput. Appl. 26, 399–412 (2012)

    Article  Google Scholar 

  2. S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, M. Spagnuolo, Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40, 12:1–12:87 (2008)

    Google Scholar 

  3. S. Biasotti, M. Marini, M. Spagnuolo, B. Falcidieno, Sub-part correspondence by structural descriptors of 3D shapes. Comput. Aided Des. 38(9), 1002–1019 (2006)

    Article  Google Scholar 

  4. P. Bille, A survey on tree edit distance and related problems. J. Theor. Comput. Sci. 337, 217–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. R.L. Boyell, H. Ruston, Hybrid techniques for real-time radar simulation, in Proceedings of the Fall Joint Computer Conference, Las Vegas (IEEE, 1963), pp. 445–458

    Google Scholar 

  6. H. Bunke, K. Riesen, Graph edit distance: optimal and suboptimal algorithms with applications, in Analysis of Complex Networks: From Biology to Linguistics, ed. by M. Dehmer, F. Emmert-Streib (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009), pp. 113–143

    Chapter  Google Scholar 

  7. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions. Comput. Geom. Theory Appl. 24(2), 75–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, in Proceedings of 21st Annual Symposium on Computational Geometry, Pisa (ACM, 2005), pp. 263–271

    Google Scholar 

  9. H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Morse-Smale complexes for piecewise linear 3-manifolds, in Proceedings of the 19th Symposium on Computational Geometry, San Diego, 2003, pp. 361–370

    Google Scholar 

  10. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse-Smale complexes for piecewise linear 2-manifold. Discret. Comput. Geom. 30, 87–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Flamm, I.L. Hofacker, P. Stadler, M. Wolfinger, Barrier trees of degenerate landscapes. Phys. Chem. 216, 155–173 (2002)

    Google Scholar 

  12. S. Gerber, P.T. Bremer, V. Pascucci, R. Whitaker, Visual exploration of high dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 16(6), 1271–1280 (2010)

    Article  Google Scholar 

  13. C. Heine, G. Scheuermann, C. Flamm, I.L. Hofacker, P.F. Stadler, Visualization of barrier tree sequences. IEEE Trans. Vis. Comput. Graph. 12(5), 781–788 (2006)

    Article  Google Scholar 

  14. M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes, in SIGGRAPH’01, Los Angeles (ACM, 2001), pp. 203–212

    Google Scholar 

  15. T. Jiang, E. Lawler, L. Wang, Aligning sequences via an evolutionary tree: complexity and approximation, in Symposium on Theory of Computing, Montréal, 1994, pp. 760–769

    Google Scholar 

  16. J.W. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)

    MATH  Google Scholar 

  17. J.R. Munkres, Elements of Algebraic Topology (Addison-Wesley, Redwood City, 1984)

    MATH  Google Scholar 

  18. P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, G. Heyer, Visualization of high-dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput. Graph. 17, 1547–1559 (2011)

    Article  Google Scholar 

  19. V. Pascucci, K. Cole-McLaughlin, G. Scorzelli, Multi-resolution computation and presentation of contour trees. Technical report UCRL-PROC-208680, LLNL, 2005

    Google Scholar 

  20. V. Pascucci, G. Scorzelli, P.T. Bremer, A. Mascarenhas, Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58.1–58.9 (2007)

    Article  Google Scholar 

  21. G. Reeb, Sur les points singuliers d’une forme de pfaff complement intergrable ou d’une fonction numerique. C. R. Acad. Sci. Paris 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  22. D.M. Thomas, V. Natarajan, Symmetry in scalar field topology. IEEE Trans. Vis. Comput. Graph. 17(12), 2035–2044 (2011)

    Article  Google Scholar 

  23. G.H. Weber, P.T. Bremer, V. Pascucci, Topological landscapes: a terrain metaphor for scientific data. IEEE Trans. Vis. Comput. Graph. 13(6), 1416–1423 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Aidos Abzhanov. This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. DOE under Contract No. DE-AC02-05CH11231 (Berkeley Lab), and the Program 055 of the Ministry of Edu. and Sci. of the Rep. of Kazakhstan under the contract with the CER, Nazarbayev University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenes Beketayev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Beketayev, K., Yeliussizov, D., Morozov, D., Weber, G.H., Hamann, B. (2014). Measuring the Distance Between Merge Trees. In: Bremer, PT., Hotz, I., Pascucci, V., Peikert, R. (eds) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-04099-8_10

Download citation

Publish with us

Policies and ethics