Skip to main content
Book cover

Soil Carbon pp 339–361Cite as

Soil Carbon Management and Climate Change

  • Chapter
  • First Online:

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

Among global issues of the twenty-first century are: population growth, increase in energy demand, enrichment of atmospheric concentration of greenhouse gases (GHGs) and the attendant climate change, increase in food production needed to meet the demands of growing and increasingly affluent population, and aggravated risks of soil and environmental degradation. Thus, enhancing the magnitude and mean residence time (MRT) of soil carbon (C) pool is integral to any strategy of addressing these and other related global issues. The promise of soil C sequestration is based on the magnitude of net biome productivity (NBP) of ~3 Pg C/year, and the hypothesis that some of the NBP can be retained in the soil to offset emissions and also enhance the resilience of soil and agroecosystems to climate change. Complementary to soil organic C (SOC) is soil inorganic C (SIC) pool, together estimated at ~4,000 Pg to 3-m depth, and play a major role in the global C cycle (GCC). The soil C sink capacity has been enhanced by depletion of the antecedent SOC pool in degraded soils. Despite the large potential of 0.5–1 Mg C/ha/year, there are numerous uncertainties: (1) increased emissions of GHGs with increase in the atmospheric concentration of CO2 because of accelerated decomposition and erosional processes, (2) change in the rate of C uptake in soils of the tropics by climate change, (3) impact of chemical weathering of silicate rocks in altering terrestrial sinks, (4) unknown fate of C transported by erosional processes, (5) a possible positive feedback from the melting of permafrost, (6) decrease in capacity of terrestrial sinks because of soil degradation, and (7) the effects of wild/managed fires on soot, charcoal and NBP.

These uncertainties interact with mechanisms of SOC stabilization and those which enhance its MRT. These mechanisms include: physical protection through deep placement and formation of stable aggregates, interaction between SOC and clay minerals, landscape position, and humification leading to formation of recalcitrant fractions. There is a vast potential of SOC sequestration through adoption of recommended management practices on croplands (e.g., conservation agriculture, cover cropping, integrated nutrient management) grazing lands (e.g., controlled grazing, better forage/tree species, soil and water conservation), forestlands (e.g., afforestation, stand management, species selection), wetland/peatland restoration, and reclamation of degraded soils. Comparatively low rate of SIC sequestration as pedogenic carbonates exist in vast arid and semi-arid lands, and in agroecosystems irrigated with good quality water. However, there are also challenges of credible measurements of small changes in soil C in a relatively large pool, and of scaling up the data from profile to watershed and regional scale. There are numerous co-effects of soil C sequestration including improvements in soil quality, increase in agronomic productivity, enhancement of biodiversity, reduction in non-point source pollution etc. Payments to land managers for ecosystem services and trading of C credits may enhance adoption of recommended technologies especially by resource-poor farmers, and small landholders in the tropics. Researchable priorities include understanding of trends and variability in principal determinants of SOC pools and its MRT, assessing the impact of C-climate feedbacks and understanding coupled cycling of C with other elements (N, P, S) and H2O. Soil C sequestration has a finite sink capacity. However, it has numerous co-benefits (e.g., food security), and is a cost-effective, win-win option, and a bridge to the future until low-C or no-C fuel sources take effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    Article  CAS  Google Scholar 

  • Azar C (2011) Biomass for energy: a dream come true … or a nightmare? WIREs Clim Change 2:309–323

    Article  Google Scholar 

  • Azar C, Lindgren K, Larson E, Mollersten K (2006) Carbon ¨capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Change 74:47–79

    Article  CAS  Google Scholar 

  • Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, Michel K, den Elzen GJ, Möllersten K, Larson ED (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Change 100:195–202

    Article  CAS  Google Scholar 

  • Azar C, Johansson DJA, Mattsson N (2013) Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ Res Lett 8:034004, p. 8. doi:10.1088/1748-9326/8/3/034004

    Article  Google Scholar 

  • Baudron F, Anderson JA, Corbeels M, Giller KE (2011) Failure to yield? Ploughs, conservation agriculture and the problem of agricultural intensification: an example from the Zambezi Valley, Zimbabwe. J Dev Stud 48(3):393–412

    Article  Google Scholar 

  • Bhat A, Bheemarasetti JVR, Rao TRS (2006) Kinetics of rice husk char gasification. Energy Convers Manag 42:2061–2069

    Article  Google Scholar 

  • Boden TA, Marland G, Andres RJ (2010) Global, regional and national fossil fuel emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US- DOE, Oak Ridge, Tennesse, USA

    Google Scholar 

  • Canadell JG, Le Quere C, Paupach MR, Field CB, Buitenhuis EK, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensification, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870

    Article  CAS  Google Scholar 

  • den Elzen MGJ, van Vuuren DP (2007) Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc Natl Acad Sci USA 104:17931–17936

    Article  Google Scholar 

  • Dyson F (2008) The question of global warning. New York review of books. http://www.nybooks.com/articles/archieves/2008/Jun/12/the-question-of-global-warming

  • Eglin T, Casia P, Piao SL et al (2010) Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus 62B:700–718

    Article  CAS  Google Scholar 

  • Ehrlich PR, Holdren JP (1971) Impact of population growth. Science 171:1212–1217

    Article  CAS  Google Scholar 

  • Fermoso J, Stevanov C, Moghtaderi B, Arias B, Pevida C, Plaza MG et al (2009) High-pressure gasification reactivity of biomass chars produced at different temperatures. J Anal Appl Pyrolysis 85:287–293

    Article  CAS  Google Scholar 

  • Friedrich T, Derpsch R, Kassam A (2012a) Overview of the global spread of conservation agriculture. J Field Actions 6:1–17

    Google Scholar 

  • Friedrich T, Derpsch R, Rabah L, Mrabet R (2012b) Conservation agriculture in the dry Mediterranean climate. Field Crop Res 132:7–17

    Article  Google Scholar 

  • GEA (2012) Global energy assessment—toward a sustainable future. University Press and the International Institute for Applied Systems Analysis, Cambridge

    Google Scholar 

  • Jenny H (1980) Alcohol or humus? Science 209:444

    Article  CAS  Google Scholar 

  • Johansson DJA, Persson UM, Azar C (2006) The cost of using global warming potentials: analyzing the trade-off between CO2; CH4, and N2O. Clim Change 77:291–309

    Article  Google Scholar 

  • Johnston AE, Poulton PR, Coleman K (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57

    Article  Google Scholar 

  • Junginger M, BokesjØ T, Bradley D, Dolzon P, Andre F, Heinimo J et al (2008) Developments in international bioenergy trade. Biomass Bioenergy 32:717–729

    Article  Google Scholar 

  • Kasting JF (2013) How was early earth kept warm? Science 339:44–45

    Article  Google Scholar 

  • Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655

    Article  CAS  Google Scholar 

  • Lal R (1999) Watershed characteristics and management effects on dissolved load in water runoff: case studies from western Nigeria. In: Lal R (ed) Integrated watershed management in the global ecosystem. CRC Press, Boca Raton, pp 95–109

    Chapter  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Lal R, Stewart BA (eds) (2012) Soil water management and agronomic productivity. CRC/Taylor and Francis, Boca Raton, 568 pp

    Google Scholar 

  • Lal R, Lorenz K, Hüttl RRJ, Schneider BU, von Braun J (2013) Ecosystem services and carbon sequestration in the biosphere. Springer, Dordrecht, p 464

    Book  Google Scholar 

  • Lowe JA et al (2009) How difficult is it to recover from dangerous levels of global warming? Environ Res Lett 4:014012

    Article  Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper SCB, Frieler K, Knutti R, Frame D, Allen MR (2009) Greenhouse-gas emission targets for limiting global warming to 2C. Nature 458:1158–1163

    Article  CAS  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  CAS  Google Scholar 

  • Ollero P, Serrera R, Arjona R, Alcantarilla S (2003) The CO2 gasification kinetics of olive residue. Biomass Bioenergy 24:151–161

    Article  CAS  Google Scholar 

  • Parry M, Lowe JA, Hanson C (2009) Overshoot, adapt and recover. Nature 458:1102–1103

    Article  CAS  Google Scholar 

  • Popp M, Nalley L, Fortin C, Smith A, Brye K (2011) Estimating net carbon emissions and agricultural response to potential carbon offset policies. Agron J 103:1132–1143

    Article  Google Scholar 

  • Ranger N, Gohar LK, Lowe JA, Raper SCB, Bowen A, Ward RET (2012) Is it possible to limit global warming to no more than 1.5C? Clim Change 111:973–981

    Article  Google Scholar 

  • Riahi K, Grubler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935

    Article  Google Scholar 

  • Rogelj J, Hare W, Lowe J, van Vuuren DP, Riahi K, Matthews B, Hanaoka T, Jiang K, Meinshausen M (2011) Emission pathways consistent with a 2C global temperature limit. Nat Clim Change 1:413–418

    Article  Google Scholar 

  • Rogelj J, McCollum DL, O’Neill BC, Riahi K (2012) 2020 emissions levels required to limit warming to below 2 °C. Nat Clim Change 3:405–412

    Article  Google Scholar 

  • Rogelj J, McCollum DL, Reisinger A, Meinshausen M, Riahi K (2013) Probabilistic cost estimates for climate change mitigation. Nature 493:79–83

    Article  Google Scholar 

  • Ruddiman W (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman W (2005) How did human function alter global climate? Sci Am 292:46–53

    Article  Google Scholar 

  • Schjonning P, de Jonge LW, Munkholm LJ et al (2011) Clay dispersibility and soil friability – testing the soil clay-to-carbon saturation concept. Vadose Zone J, SSA, p. 14. doi:10.2136/vzj2011.0067

  • Seo DK, Lee SK, Kang MW, Hwang J, Yu T (2010) Gasification reactivity of biomass chars with CO2. Biomass Bioenergy 34:1946–1953

    Article  CAS  Google Scholar 

  • Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 106:1704–1709

    Article  CAS  Google Scholar 

  • Stockman U, Adams MA, Crawford JW et al (2013) The knows, know unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  Google Scholar 

  • Trenberth KE (2010) Fixing the planet? Science 330:1178–1179

    Article  Google Scholar 

  • Tyndal Centre for Climate Change Research (2011) Global carbon budget 2010. Retrieved from http://www.tyndall.ac.uk/global-carbon-budget-2010

  • UNFCCC (2010) United States Department of State. U.S. Climate Action Report 2010. Global Publishing Services, Washington, DC, June 2010. Convention on Climate Change

    Google Scholar 

  • United Nations (2013) World population prospects: the 2012 revision, key findings and advance tables. Working paper no. ESA/P/WP.227, New York, USA

    Google Scholar 

  • US- DOE (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science; Reports from the March 2008 Workshop, DOE/SC-108, U. S. Department of Energy Office of Science, Washington, D.C., USA

    Google Scholar 

  • van Vuuren DP, Riahi K (2011) The relationship between short-term emissions and long-term concentration targets. Clim Change 104:793–801

    Article  Google Scholar 

  • van Vuuren DP, den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159

    Article  CAS  Google Scholar 

  • Wang DD, Shi XZ, Wang HJ et al (2010) Scale effect of climate on soil organic carbon in the Uplands of Northeast China. J Soils Sediments 10:1007–1017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lal, R. (2014). Soil Carbon Management and Climate Change. In: Hartemink, A., McSweeney, K. (eds) Soil Carbon. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-04084-4_35

Download citation

Publish with us

Policies and ethics