Skip to main content

Carbon Storage and DNA Adsorption in Allophanic Soils and Paleosols

  • Chapter
  • First Online:
Soil Carbon

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

Andisols and andic paleosols dominated by the nanocrystalline mineral allophane sequester large amounts of carbon (C), attributable mainly to its chemical bonding with charged hydroxyl groups on the surface of allophane together with its physical protection in nanopores within and between allophane nanoaggregates. C near-edge X-ray absorption fine structure (NEXAFS) spectra for a New Zealand Andisol (Tirau series) showed that the organic matter (OM) mainly comprises quinonic, aromatic, aliphatic, and carboxylic C. In different buried horizons from several other Andisols, C contents varied but the C species were similar, attributable to pedogenic processes operating during developmental upbuilding, downward leaching, or both. The presence of OM in natural allophanic soils weakened the adsorption of DNA on clay; an adsorption isotherm experiment involving humic acid (HA) showed that HA-free synthetic allophane adsorbed seven times more DNA than HA-rich synthetic allophane. Phosphorus X-ray absorption near-edge structure (XANES) spectra for salmon-sperm DNA and DNA-clay complexes indicated that DNA was bound to the allophane clay through the phosphate group, but it is not clear if DNA was chemically bound to the surface of the allophane or to OM, or both. We plan more experiments to investigate interactions among DNA, allophane (natural and synthetic), and OM. Because DNA shows a high affinity to allophane, we are studying the potential to reconstruct late Quaternary palaeoenvironments by attempting to extract and characterise ancient DNA from allophanic paleosols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakker L, Lowe DJ, Jongmans AG (1996) A micromorphological study of pedogenic processes in an evolutionary soil sequence formed on Late Quaternary rhyolitic tephra deposits, North Island, New Zealand. Quat Int 34–36:249–261

    Article  Google Scholar 

  • Basile-Doelsch I, Amundson R, Stone WEE, Masiello CA, Bottero JY, Colin F, Borschneck D, Meunier JD (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Réunion. Eur J Soil Sci 56:689–703

    CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2004) Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci 23:481–504

    Article  CAS  Google Scholar 

  • Buurman P, Peterse F, Almendros MG (2007) Soil organic matter chemistry in allophanic soils: a pyrolysis-GC/MS study of a Costa Rican Andosol catena. Eur J Soil Sci 58:1330–1347

    Article  CAS  Google Scholar 

  • Cai P, Huang Q-Y, Zhang X-W (2006a) Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase. Environ Sci Technol 40:2971–2976

    Article  CAS  Google Scholar 

  • Cai P, Huang Q, Jiang D, Rong X, Liang W (2006b) Microcalorimetric studies on the adsorption of DNA by soil colloidal particles. Colloids Surf B: Biointerfaces 49:49–54

    Article  CAS  Google Scholar 

  • Calabi-Floody M, Bendall JS, Jara AA, Welland ME, Theng BKG, Rumpel C, Mora ML (2011) Nanoclays from an Andisol: extraction, properties and carbon stabilization. Geoderma 161:159–167

    Article  CAS  Google Scholar 

  • Chevallier T, Woignier T, Toucet J, Blanchart E (2010) Organic carbon stabilization in the fractal pore structure of Andosols. Geoderma 159:182–188

    Article  CAS  Google Scholar 

  • Churchman GJ, Lowe DJ (2012) Alteration, formation, and occurrence of minerals in soils. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, vol 1, 2nd edn, Properties and processes. CRC Press, Boca Raton, pp 20.1–20.72

    Google Scholar 

  • Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82:113–182

    Article  CAS  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Greaves MP, Wilson MJ (1970) The degradation of nucleic acids and montmorillonite-nucleic-acid complexes by soil microorganisms. Soil Biol Biochem 2:257–268

    Article  CAS  Google Scholar 

  • Harsh J (2012) Poorly crystalline aluminosilicate clay minerals. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, vol 1, 2nd edn, Properties and processes. CRC Press, Boca Raton, pp 23.1–23.13

    Google Scholar 

  • Kizewski F, Liu Y-T, Morris A, Hesterberg D (2011) Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. J Environ Qual 40:751–766

    Article  CAS  Google Scholar 

  • Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725

    CAS  Google Scholar 

  • Lehmann J (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Glob Biogeochem Cycles 19:GB1013

    Google Scholar 

  • Lehmann J, Solomon D (2010) Organic carbon chemistry in soils observed by synchrotron-based spectroscopy. In: Singh B, Gräfe M (eds) Synchrotron-based techniques in soils and sediments. Elsevier, Amsterdam, pp 289–312

    Chapter  Google Scholar 

  • Lehmann J, Kinyangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85:45–57

    Article  Google Scholar 

  • Lowe DJ, Lanigan KM, Palmer DJ (2012) Where geology meets pedology: Late Quaternary tephras, loess, and paleosols in the Mamaku Plateau and Lake Rerewhakaaitu areas. Geosci Soc N Z Misc Publ 134B:2.1–2.45

    Google Scholar 

  • McCarthy J, Ilavsky J, Jastrow J, Mayer L, Perfect E, Zhuang J (2008) Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochim Cosmochim Acta 72:4725–4744

    Article  CAS  Google Scholar 

  • McDaniel PA, Lowe DJ, Arnalds O, Ping C-L (2012) Andisols. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, vol 1, 2nd edn, Properties and processes. CRC Press, Boca Raton, pp 33.29–33.48

    Google Scholar 

  • Ohashi F, Wada S-I, Suzuki M, Maeda M, Tomura S (2002) Synthetic allophane from high concentration solutions: nanoengineering of the porous solid. Clay Miner 37:451–456

    Article  CAS  Google Scholar 

  • Paget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol Ecol 15:109–118

    Article  CAS  Google Scholar 

  • Parfitt RL (2009) Allophane and imogolite: role in soil biogeochemical processes. Clay Miner 44:135–155

    Article  CAS  Google Scholar 

  • Parfitt RL, Fraser AR, Farmer VC (1977) Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. J Soil Sci 28:289–296

    Article  CAS  Google Scholar 

  • Saeki K, Sakai M, Wada S-I (2010) DNA adsorption on synthetic and natural allophanes. Appl Clay Sci 50:493–497

    Article  CAS  Google Scholar 

  • Saeki K, Ihyo Y, Sakai M, Kunito T (2011) Strong adsorption of DNA molecules on humic acids. Environ Chem Lett 9:505–509

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens I, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumboe S (2011) Persistence of soil organic matter as ecosystem property. Nature 478:49–56

    Article  CAS  Google Scholar 

  • Strong DT, Wever HD, Merckx R, Recous S (2004) Spatial location of carbon decomposition in the soil pore system. Eur J Soil Sci 55:739–750

    Article  Google Scholar 

  • Sutton SR, Caffee MW, Dove MT (2006) Synchrotron radiation, neutron, and mass spectrometry techniques at user facilities. Elements 2:15–21

    Article  CAS  Google Scholar 

  • Wan J, Tyliszczak T, Tokunaga T (2007) Organic carbon distribution, speciation, and elemental correlations within soil microaggregates: applications of STXM and NEXAFS spectroscopy. Geochim Cosmochim Acta 71:5439–5449

    Article  CAS  Google Scholar 

  • Yuan G, Theng BKG (2012) Clay-organic interactions in soil environments. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, vol 2, 2nd edn, Resource management and environmental impacts. CRC Press, Boca Raton, pp 2.1–2.20

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Marsden Fund (10-UOW-056) through the Royal Society of New Zealand. We thank NSRRC, Taiwan, and especially Dr. Tsan-Yao Chen for technical instruction and support, Ling-Yun Jang for P XANES spectra for salmon-sperm DNA, Prof Shin-Ichiro Wada (Kyushu University) for advice on allophane synthesis, Dr. Emma Summers, Janine Ryburn, and Lynne Parker (Waikato University) for help with experiments, and Prof Kevin McSweeney (University of Wisconsin—Madison) for reviewing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Tuan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, YT., Lowe, D.J., Churchman, G.J., Schipper, L.A., Rawlence, N.J., Cooper, A. (2014). Carbon Storage and DNA Adsorption in Allophanic Soils and Paleosols. In: Hartemink, A., McSweeney, K. (eds) Soil Carbon. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-04084-4_17

Download citation

Publish with us

Policies and ethics