Skip to main content

Challenges for Soil Organic Carbon Research

  • Chapter
  • First Online:

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

The soil body is the largest terrestrial pool of organic carbon globally. Lately, research related to soil organic carbon has been a main focus worldwide, motivated by the potential the soil inhabits to become a manageable sink for atmospheric carbon dioxide and thus to mitigate climate change and the known benefits of increased soil organic carbon for the functioning of soils. Here, challenges are highlighted for soil organic carbon research that we are currently facing. Knowledge on soil organic carbon dynamics in the soil system is briefly reviewed, followed by an elaboration on how soil organic carbon dynamics and soil organic carbon stocks have been modelled in space and time and where modelling needs to go.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    Article  CAS  Google Scholar 

  • Angers DA, Eriksen-Hamel NS (2008) Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J 72:1370–1374

    Article  CAS  Google Scholar 

  • Angers DA, Arrouays D, Saby NPA, Walter C (2011) Estimating and mapping the carbon saturation deficit of French agricultural topsoils. Soil Use Manag 27:448–452

    Article  Google Scholar 

  • Baldock J (2007) Composition and cycling of organic carbon. In: Marschner P, Rengel Z (eds) Soil nutrient cycling in terrestrial ecosystems. Springer, Berlin/Heidelberg, pp 1–35

    Chapter  Google Scholar 

  • Boddey RM, Jantalia CP, Conceiçao PC, Zanatta JA, Bayer C, Mielniczuk J, Dieckow J, Dos Santos HP, Denardin JE, Aita C, Giacomini SJ, Alves BJR, Urquiaga S (2010) Carbon accumulation at depth in Ferrasols under zero-till subtropical agriculture. Glob Chang Biol 16(2):784–795

    Article  Google Scholar 

  • Bouma J, McBratney AB (2013) Framing soils as an actor when dealing with wicked environmental problems. Geoderma 200–201:130–139

    Article  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    Article  CAS  Google Scholar 

  • Janzen HH (2006) The soil carbon dilemma: shall we hoard it or use it? Soil Biol Biochem 38:419–424

    Article  CAS  Google Scholar 

  • Jastrow J, Miller RM (1998) Mechanisms of soil organic matter stabilization. In: Soil processes and the carbon cycle. CRC Press, Boca Raton

    Google Scholar 

  • Jenkinson DS, Coleman K (2008) The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur J Soil Sci 59:400–413

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kleber M, Johnson MG (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agron 106:77–142

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2008) Soil carbon stocks under present and future climate with specific reference to European ecoregions. Nutr Cycl Agroecosyst 81:113–127

    Article  Google Scholar 

  • Lawrence CR, Neff JC, Schimel JP (2009) Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol Biochem 41:1923–1934

    Article  CAS  Google Scholar 

  • Lehmann J, Solomon D, Kinyangi J, Dathe L, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242

    Article  CAS  Google Scholar 

  • Leifeld J, Angers DA, Chenu C, Fuhrer J, Kätterer T, Powlson DS (2013) Organic farming gives no climate change benefit through soil carbon sequestration. Proc Natl Acad Sci 110(11):E984

    Article  CAS  Google Scholar 

  • Loke PF, Kotzé E, Du Preez CC (2012) Changes in soil organic matter indices following 32 years of different wheat production management practices in semi-arid South Africa. Nutr Cycl Agroecosyst 1–13

    Google Scholar 

  • Luo Z, Wang E, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139:224–231

    Article  CAS  Google Scholar 

  • Lytton-Hitchins JA, Koppi AJ, McBratney AB (1994) The soil condition of adjacent bio-dynamic and conventionally managed dairy pastures in Victoria, Australia. Soil Use Manag 10:79–87

    Article  Google Scholar 

  • Malamoud K, McBratney AB, Minasny B, Field DJ (2009) Modelling how carbon affects soil structure. Geoderma 149:19–26

    Article  CAS  Google Scholar 

  • Malone BP, McBratney AB, Minasny B, Laslett GM (2009) Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154:138–152

    Article  CAS  Google Scholar 

  • Malone BP, McBratney AB, Minasny B (2011) Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma 160:614–626

    Article  Google Scholar 

  • Minasny B, McBratney AB, Mendonça-Santos ML, Odeh IOA, Guyon B (2006) Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Soil Res 44:233–244

    Article  CAS  Google Scholar 

  • Minasny B, Sulaeman Y, McBratney AB (2011) Is soil carbon disappearing? The dynamics of soil organic carbon in Java. Glob Chang Biol 17:1917–1924

    Article  Google Scholar 

  • Minasny B, McBratney AB, Malone BP, Wheeler I (2013) Digital mapping of soil carbon. Adv Agron 118:1–47

    Article  Google Scholar 

  • Post J, Krysanova V, Suckow F, Mirschel W, Rogasik J, Merbach I (2007) Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins. Ecol Model 206:93–109

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  CAS  Google Scholar 

  • Shatar TM, McBratney AB (2004) Boundary-line analysis of field-scale yield response to soil properties. J Agric Sci 142:553–560

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Smith P, Andrén O, Brussaard L, Dangerfield M, Ekschmitt K, Lavelle P, Tate K (1998) Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Glob Chang Biol 4:773–784

    Article  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ et al (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Vanwalleghem T, Stockmann U, Minasny B, McBratney AB (2013) A quantitative model for integrating landscape evolution and soil formation. J Geophys Res Earth Surf 118:1–17

    Article  Google Scholar 

  • Viaud V, Angers DA, Walter C (2010) Towards landscape-scale modeling of soil organic matter dynamics in agroecosystems. Soil Sci Soc Am J 74:1–14

    Article  Google Scholar 

  • Virto I, Barré P, Burlot A, Chenu C (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26

    Article  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  Google Scholar 

  • Wutzler T, Reichstein M (2008) Colimitation of decomposition by substrate and decomposers – a comparison of model formulations. Biogeosciences 5:749–759

    Article  CAS  Google Scholar 

  • Yan F, McBratney AB, Copeland L (2000) Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales. Geoderma 96:321–343

    Article  Google Scholar 

  • Zvomuya F, Janzen HH, Larney FJ, Olson BM (2008) A long-term field bioassay of soil quality indicators in a semiarid environment. Soil Sci Soc Am J 72:683–692

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Unité Infosol INRA (French Institute for Agricultural Research) in Orléans for granting permission to use the SOC dataset of French agricultural soils for further analysis in this chapter. The authors would also like to thank Prof. Christian Walter, Agrocampus-Ouest in Rennes for providing this dataset and undertaking the initial analysis of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex B. McBratney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McBratney, A.B., Stockmann, U., Angers, D.A., Minasny, B., Field, D.J. (2014). Challenges for Soil Organic Carbon Research. In: Hartemink, A., McSweeney, K. (eds) Soil Carbon. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-04084-4_1

Download citation

Publish with us

Policies and ethics