Skip to main content

The EUV and Soft X-Ray FEL in Hamburg

  • Chapter
  • First Online:
Free-Electron Lasers in the Ultraviolet and X-Ray Regime

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 258))

  • 6136 Accesses

Abstract

The idea to use a long linear accelerator (linac) for providing the drive beam for an X-ray free-electron laser was conceived at the Stanford Linear Accelerator Center SLAC. In the Linac Coherent Light Source LCLS (see Chap. 9) a 1 km long section of the SLAC electron linac, which has been the major facility for elementary particle physics at Stanford since 1965, delivers the beam needed in the FEL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider here the normalized emittance, see Sect.  8.9.

  2. 2.

    This applies if one neglects a small second-order correction to the beam transfer matrix of the chicane.

  3. 3.

    In a beam pipe of arbitrary cross section, which is kept invariant along the axis, the field pattern will be more complicated than in a round pipe, but wake field effects are still absent if the resistance of the wall vanishes and the particles are ultra-relativistic.

  4. 4.

    The bunch form factor may have zeroes in the upper half of the complex \(\tilde{\omega }\) plane which lead to singularities of \(\ln [F(\tilde{\omega })]\) and contribute additional terms to the right-hand side of Eq. (8.12). These contributions are not experimentally accessible. For a further discussion see [30].

  5. 5.

    It should be noted that also the TDS data suffer from ambiguities, the reconstructed shape depends on the streak direction. A possible explanation is that the particles possess a non-vanishing average slope \(\langle y'(\zeta ) \rangle \) in streak direction which varies along the bunch axis. The resulting shape errors cancel when taking the average of the TDS measurements with positive and negative streak direction.

References

  1. L. Lilje et al., Achievement of 35 MV/m in the superconducting nine-cell cavities for TESLA. Nucl. Instrum. Meth. A 524, 1 (2004)

    Article  ADS  Google Scholar 

  2. R. Brinkmann, G. Materlik, J. Rossbach, J. Schneider, B.H. Wiik, An X-ray FEL laboratory as part of a linear collider design. Nucl. Instrum. Meth. A 393, 88 (1997)

    Article  ADS  Google Scholar 

  3. J. Rossbach, A VUV free electron laser at the TESLA test facility at DESY. Nucl. Instrum. Meth. A 375, 269 (1996)

    Article  ADS  Google Scholar 

  4. J. Pflüger, U. Hahn, B. Faatz, M. Tischer, Undulator system for the VUV-FEL at the TESLA test facility phase-2. Nucl. Instrum. Meth. A 507, 228 (2003)

    Article  ADS  Google Scholar 

  5. J. Fraser, R. Sheffield, E.R. Gray, A new high-brightness electron injector for free-electron lasers driven by rf linacs. Nucl. Instrum. Meth. A 250, 71 (1986)

    Article  ADS  Google Scholar 

  6. I. Will, H.I. Templin, S. Schreiber, W. Sandner, Photoinjector drive laser of the FLASH FEL. Opt. Express 19, 23770 (2011)

    Article  ADS  Google Scholar 

  7. B.E. Carlsten, New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Meth. A 285, 313 (1989)

    Article  ADS  Google Scholar 

  8. L. Serafini, J.B. Rosenzweig, Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: a theory of emittance compensation. Phys. Rev. E 55, 7565 (1997)

    Article  ADS  Google Scholar 

  9. K. Flöttmann, ASTRA, A Space charge Tracking Algorithm. http://www.desy.de/~mpyflo (1999)

  10. M. Krasilnikov et al., Experimentally minimized beam emittance from an L-band photoinjector. Phys. Rev. ST Accel. Beams 15, 100701 (2012)

    Article  ADS  Google Scholar 

  11. B. Aune et al., The superconducting TESLA cavities. Phys. Rev. ST Acc. Beams 3, 92001 (2000)

    Article  ADS  Google Scholar 

  12. P. Schmüser, Superconductivity in high energy particle accelerators. Prog. Part. Nucl. Phys. 49(1), 155 (2002)

    Article  ADS  Google Scholar 

  13. R. Ischebeck, Transverse coherence of a VUV free electron laser, Ph.D. thesis, University of Hamburg, 2003

    Google Scholar 

  14. H. Edwards, C. Behrens, E. Harms, 3.9 GHz cavity module for linear bunch compression at FLASH, in Proceedings of Linear Accelerator Conference 2010, Tsukuba, Japan, 2010

    Google Scholar 

  15. I. Zagorodnov, M. Dohlus, Semianalytical modeling of multistage bunch compression with collective effects. Phys. Rev. ST Acc. Beams 14, 014403 (2011)

    Article  ADS  Google Scholar 

  16. A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators (John Wiley, New York, 1993)

    Google Scholar 

  17. P. Krejcik et al., Commissioning of the SSPS linac bunch compressor, in Proceedings of Particle Accelerator Conference PAC 2003, Portland, Oregon (2003), p. 423

    Google Scholar 

  18. R. Akre et al., Bunch length measurements using a transverse RF deflecting structure in the SLAC linac, in European Particle Accelerator Conference EPAC 2002, Paris 2002

    Google Scholar 

  19. M. Röhrs, Investigations of the phase space distributions of electron bunches at the FLASH-linac using a transverse deflecting structure, Ph.D. thesis, University of Hamburg, April 2008

    Google Scholar 

  20. B. Steffen, Electro-optic methods for longitudinal bunch diagnostic at FLASH, Ph.D. thesis, University of Hamburg 2007

    Google Scholar 

  21. B. Steffen et al., Electro-optic time profile monitors for femtosecond electron bunches at the soft x-ray free-electron laser FLASH. Phys. Rev. ST Acc. Beams 12, 032802 (2009)

    Article  ADS  Google Scholar 

  22. G. Berden et al., Benchmarking of electro-optic monitors for femtosecond electron bunches. Phys. Rev. Lett. 99, 164801 (2007)

    Article  ADS  Google Scholar 

  23. A. Azima et al., Time-resolved pump-probe experiments beyond the jitter limitations at FLASH. Appl. Phys. Lett. 94, 144102 (2009)

    Article  ADS  Google Scholar 

  24. R. Lai, U. Happek, A.J. Sievers, Measurement of the longitudinal asymmetry of a charged particle bunch from the coherent synchrotron or transition radiation spectrum. Phys. Rev. E 50, R4294 (1994)

    Article  ADS  Google Scholar 

  25. H. Delsim-Hashemi et al., Single-shot diagnostics with THz radiation at the free-electron laser FLASH, in International Free Electron Laser Conference, Berlin, 2006

    Google Scholar 

  26. S. Wesch et al., A multi-channel THz and infrared spectrometer for femtosecond electron bunch diagnostics by single-shot spectroscopy of coherent radiation. Nucl. Instrum. Meth. A 665, 40 (2011)

    Article  ADS  Google Scholar 

  27. S. Casalbuoni et al., Ultrabroadband terahertz source and beamline based on coherent transition radiation. Phys. Rev. ST Acc. Beams 12, 030705 (2009)

    Article  ADS  Google Scholar 

  28. S. Wesch, Echtzeitbestimmung longitudinaler Elektronenstrahlparameter mittels absoluter Intensitäts- und Spektralmessung einzelner kohärenter THz Strahlungspulse, Ph.D. thesis, University of Hamburg, 2012

    Google Scholar 

  29. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972)

    Google Scholar 

  30. R. Lai, A.J. Sievers, On using the coherent far IR radiation produced by a charged-particle bunch to determine its shape: I analysis. Nucl. Instrum. Meth. A 397, 221 (1997)

    Article  ADS  Google Scholar 

  31. E.J. Akutowicz, On the determination of the phase of a Fourier integral. Trans. Amer. Math. Soc. 83, 179 (1956)

    MATH  MathSciNet  Google Scholar 

  32. M. Röhrs et al., Time-resolved electron beam phase space tomography at a soft x-ray free-electron laser. Phys. Rev. ST Acc. Beams 12, 050704 (2009)

    Article  Google Scholar 

  33. J. Kim et al., Large-Scale timing distributions and RF synchronization for FEL facilities, in Proceedings of FEL Conference 2004, Trieste, Italy (2004), p. 339

    Google Scholar 

  34. J. Kim et al., Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nature Photonics 2, 733 (2008)

    Article  ADS  Google Scholar 

  35. S. Schulz et al., All-optical synchronization of distributed laser systems at FLASH, in Proceedings of PAC09, Vancouver, Canada (2009), p. 4174

    Google Scholar 

  36. F. Löhl, Optical Synchronization of a Free-Electron Laser with Femtosecond Precision, Ph.D. thesis University of Hamburg, 2009

    Google Scholar 

  37. F. Löhl et al., Electron bunch timing with femtosecond precision in a superconducting free-electron laser. Phys. Rev. Lett. 104, 144801 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schmüser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmüser, P., Dohlus, M., Rossbach, J., Behrens, C. (2014). The EUV and Soft X-Ray FEL in Hamburg. In: Free-Electron Lasers in the Ultraviolet and X-Ray Regime. Springer Tracts in Modern Physics, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-319-04081-3_8

Download citation

Publish with us

Policies and ethics