Skip to main content

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 258))

  • 6179 Accesses

Abstract

In this section we demonstrate how Hamiltonian mechanics can be used to derive the trajectory of an electron in an undulator magnet and its coupling to the radiation field. For a thorough presentation of the Lagrange–Hamilton formulation of classical mechanics we refer to the textbooks by Landau and Lifshitz [1] and Goldstein [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particle physics one looks along the direction of motion of the photon. In that case the electric vector at a fixed spatial position rotates in clockwise direction. In optics the convention is such that the observer is facing into the oncoming wave, and then the field vector at a fixed spatial position rotates counterclockwise, see Ref. [4].

References

  1. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Volume 1: Mechanics (Butterworth-Heinemann, Boston, 2003)

    Google Scholar 

  2. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, 1959)

    Google Scholar 

  3. J.B. Murphy, C. Pellegrini, Introduction to the Physics of the Free Electron Laser, Laser Handbook, vol. 6 (North Holland, Amsterdam, 1990), p. 11

    Google Scholar 

  4. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  5. Z. Huang, K.-J. Kim, Review of X-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007)

    Article  ADS  Google Scholar 

  6. D.A. Edwards, M.J. Syphers, An Introduction to the Physics of High Energy Accelerators (Wiley, New York, 1993)

    Book  Google Scholar 

  7. A.M. Kondratenko, E.L. Saldin, Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207 (1980)

    Google Scholar 

  8. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997)

    Google Scholar 

  9. D. Meschede, Optik, Licht und Laser (Teubner, Stuttgart, 1999)

    Book  Google Scholar 

  10. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin, 2000)

    Book  Google Scholar 

  11. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw Hill, New York, 1965)

    Google Scholar 

  12. E. Lohrmann, V. Blobel, Statistische und numerische Methoden der Datenanalyse (Teubner Studienbücher, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schmüser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmüser, P., Dohlus, M., Rossbach, J., Behrens, C. (2014). Appendices. In: Free-Electron Lasers in the Ultraviolet and X-Ray Regime. Springer Tracts in Modern Physics, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-319-04081-3_10

Download citation

Publish with us

Policies and ethics