Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1035 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2104))

Abstract

This is the introduction and summarizes the results proven in the following chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This theorem is one of the main reasons why it makes sense to define the well-known curves F N and T N , which are in many cases unions of certain twisted diagonals (see e.g. [HV74] or [McM07]). Moreover H.-G. Franke and W. Hausmann gave explicit formulas for the volume of the curves F N and T N ([Hau80], Satz 3.10 and Korollar 3.11). See Sect. 2.5.1.

  2. 2.

    The Kobayashi metric d is the largest pseudo-metric on X D such that for all holomorphic maps \(f: \mathbb{D} \rightarrow X_{D}\) we have: d(f(x), f(y)) ≤ ρ(x, y) where ρ is the Poincaré metric on the unit disk \(\mathbb{D}\).

  3. 3.

    This is not completely correct: A Teichmüller curve might also be the projection of a \(\mathrm{SL}_{2}(\mathbb{R})\)-orbit of a half-translation surface (X, q) where q is a quadratic differential. We may however restrict to the case (X, ω) by the so-called double covering construction.

  4. 4.

    A Teichmüller curve in \(\mathcal{M}_{g}\) is called primitive if it does not arise by a covering construction from a Teichmüller curve in lower genus.

  5. 5.

    If D = 5 then there is also a second primitive Teichmüller curve given by the regular decagon (see [McM06b]).

  6. 6.

    As the Hilbert modular surface X D parametrizes all principally polarized Abelian surfaces with real multiplication by \(\mathcal{O}_{D}\) (Theorem 2.30) one gets indeed an embedding of the Teichmüller curve into X D .

  7. 7.

    More generally it is, of course, true that all twists of Kobayashi curves are again Kobayashi curves, but we are only concerned about twisted Teichmüller curves in these notes.

  8. 8.

    There is a recent preprint [Muk12] of R. Mukamel where he claims to give an algorithm to find the Veech group of any Veech surface.

  9. 9.

    To be more precise: While C X, D lies on X D for all D, this is not always the case for C S, D . The curves C S, D always do allow real multiplication by \(\mathcal{O}_{D}\) but are not principally polarized. Therefore, for some D the curve lies C S, D on a different Hilbert modular surface (see Chap. 7).

  10. 10.

    Goethe Universität Frankfurt am Main, Institut für Algebra und Geometrie, Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main

    E-mail address: weiss@math.uni-frankfurt.de

References

Goethe Universität Frankfurt am Main, Institut für Algebra und Geometrie, Robert-Mayer-Str. 6-8, 60325 Frankfurt am Main

E-mail address: weiss@math.uni-frankfurt.de

  1. L. Arnold, Random Dynamical Systems (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  2. A. Avila, J. Bochi, Trieste Lecture Notes on Lyapunov Exponents, Part I (2008), http://www.mat.puc-rio.nr/~jairo/docs/trieste.pdf

  3. A. Avila, S. Gouezel, J.-C. Yoccoz, Exponential mixing for the Teichmüller flow. Publ. Math. Inst. Hautes Étud. Sci. 104, 143–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Avila, M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture. Acta Math. 198, 1–56 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bainbridge, Euler characteristics of Teichmüller curves in genus two. Geom. Topol. 11, 1887–2013 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Baumslag, Topics in Combinatorial Group Theory (Birkhäuser, Basel, 1993)

    Book  MATH  Google Scholar 

  7. A.F. Beardon, The Geometry of Discrete Groups (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  8. A. Beauville, Prym varieties: a survey. Proc. Symp. Pure Math. 49(1), 607–620 (1989)

    Article  MathSciNet  Google Scholar 

  9. C. Birkenhake, H. Lange, Complex Abelian Varieties (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  10. I. Bouw, M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents. Ann. Math. 172, 139–185 (2010)

    Article  MATH  Google Scholar 

  11. I. Bouw, M. Möller, Differential equations associated with nonarithmetic Fuchsian groups. J. Lond. Math. Soc. 81(1), 65–90 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. J.H. Bruinier, Hilbert modular forms and their applications, in The 1-2-3 of Modular Forms, ed. by J.H. Bruinier et al. (Springer, Berlin, 2008)

    Google Scholar 

  13. K. Calta, Veech surfaces and complete periodicity in genus two. J. AMS 17(4), 871–908 (2004)

    MATH  MathSciNet  Google Scholar 

  14. D. Chen, Square-tiled surfaces and rigid curves on moduli spaces (2010), arXiv: math.Ag/1003.0731

    Google Scholar 

  15. D. Chen, M. Möller, Non-varying sum of Lyapunov exponents of Abelian differentials of low genus, preprint (2011)

    Google Scholar 

  16. H. Cohen, H.W. Lenstra, Heuristics on Class Groups of Number Fields. Lecture Notes in Mathematics, vol. 1068 (Springer, Berlin, 1984), pp. 33–62

    Google Scholar 

  17. I. Cornfeld, S. Fomin, J. Sinaj, Ergodic Theory (Springer, Berlin, 1982)

    Book  MATH  Google Scholar 

  18. D. Cox, Primes of the Form x 2 + ny 2 : Fermat, Class Field Theory and Complex Multiplication (Wiley, New York, 1989)

    Google Scholar 

  19. O. Debarre, Complex Tori and Abelian Varieties. SMF/AMS Texts and Monographs (American Mathematical Society, 2005)

    Google Scholar 

  20. P. Deligne, Travaux de Shimura. Sémin. Bourbaki 13, 123–165 (1970)

    Google Scholar 

  21. H.-D. Ebbinghaus et al. (eds.), Zahlen, 3rd edn. (Springer, Berlin, 1992)

    MATH  Google Scholar 

  22. M. Einsiedler, Ratner’s Theorem on \(\mathrm{SL}_{2}(\mathbb{R})\) -invariant Measures (2006), http://www.math.ethz.ch/~einsiedl/omgsur.pdf

  23. A. Eskin, M. Kontsevich, A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, arXiv:1112.5872 (2011)

    Google Scholar 

  24. H. Farkas, I. Kra, Riemann Surfaces (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  25. G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann. Math. 155, 1–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Forni, On the Lyapunov exponent of the Kontsevich-Zorich cocycle, in Handbook of Dynamical Systems, vol. 1B, ed. by A. Katok, B. Hasselblatt (Elsevier B.V., Amsterdam, 2006)

    Google Scholar 

  27. O. Forster, Riemannsche Flächen (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  28. H.-G. Franke, Kurven in Hilbertschen Modulflächen und Humbertsche Flächen im Siegel-Raum. Bonner Mathematische Schriften, vol. 104 (E. Brieskorn et al., 1978)

    Google Scholar 

  29. E. Freitag, Hilbert Modular Forms (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  30. E. Freitag, R. Busam, Funktionentheorie (Springer, Berlin, 2006)

    MATH  Google Scholar 

  31. H. Furstenberg, Noncommuting random products. Trans. AMS 108, 377–428 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  32. E. Gutkin, C. Judge, The Geometry and arithmetic of translation surfaces with applications to polygonal billiards. Math. Res. Lett. 3, 391–403 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. E. Gutkin, C. Judge, Affine mappings of translation surfaces: geometry and arithmetic. Duke Math J. 103, 191–213 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. U. Hamenstädt, Teichmüller theory, in Moduli Spaces of Riemann Surfaces, Park City Lectures, vol. 20. (B. Farb et al., 2013)

    Google Scholar 

  35. J. Harris, I. Morrison, Moduli of Curves (Springer, Berlin, 1998)

    MATH  Google Scholar 

  36. D. Hartshorne, Algebraic Geometry (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  37. W. Hausmann, Kurven auf Hilbertschen Modulflächen. Bonner Mathematische Schriften, vol. 123 (E. Brieskorn et al., 1980)

    Google Scholar 

  38. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen (Akdameische Verlagsgesellschaft, Leipzig, 1923)

    MATH  Google Scholar 

  39. F. Herrlich, G. Schmithüsen, On the boundary of Teichmüller disks in Teichmüller and in Schottky space, in Handbook of Teichmüller Theory, ed by. A. Papadopulos (EMS, Zurich, 2007)

    Google Scholar 

  40. F. Hirzebruch, Hilbert Modular Surfaces (Monographie No 21 de L’Enseignment Mathématique, Genève, 1973)

    Google Scholar 

  41. F. Hirzebruch, A. Van de Ven, Hilbert modular surfaces and the classification of algebraic surfaces. Invent. Math. 23, 1–29 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Hirzebruch, D.B. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math. 36, 57–113 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  43. P. Hubert, T. Schmidt, An introduction to Veech surfaces, in Handbook of Dynamical Systems, vol. 1B, ed. by A. Katok, B. Hasselblatt (Elsevier B.V., Amsterdam, 2006)

    Google Scholar 

  44. T. Ibukiyama, F. Onodera, On the graded ring of modular forms of the Siegel paramodular group of level 2. Abh. Math. Sem. Univ. Hamburg 67, 297–305 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  45. Y. Imayoshi, N. Taniguchi, An Introduction to Teichmüller Spaces (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  46. D. Johnson, C. Queen, A. Sevilla, Euclidean real quadratic number fields. Arch. Math. 44, 340–347 (1985) [Birkhäuser]

    Google Scholar 

  47. A. Kappes, Monodromy representations and Lyapunov exponents of origamis, Dissertation, Universität Karlsruhe, 2011

    Google Scholar 

  48. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  49. S. Katok, Fuchsian Groups (University of Chicago Press, Chicago, 1992)

    MATH  Google Scholar 

  50. S. Katok, Coding of closed geodesics after Gauss and Morse. Geom. Dedicata 63, 123–145 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  51. S. Katok, Fuchsian groups, geodesic flows on surfaces of constant negative curvature and symbolic coding of geodesics, in Clay Mathematics Proceedings, vol. 8 (2008)

    Google Scholar 

  52. S. Katok, I. Ugarcovici, Symbolic dynamics for the modular surface and beyond. Bull. AMS 44(1), 87–132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. L.J.P. Kilford, Modular Forms - A Classical and Computational Introduction (Imperial College Press, London, 2008)

    Book  MATH  Google Scholar 

  54. S. Kobayashi, Intrinsic metrics on complex manifolds. Bull. Am. Math. Soc. 73, 347–349 (1967)

    Article  MATH  Google Scholar 

  55. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings. Pure and Applied Mathematics, vol. 2 (Marcel Dekker, New York, 1970)

    Google Scholar 

  56. M. Koecher, A. Krieg, Elliptische Funktionen Modulformen (Springer, Berlin, 2007)

    MATH  Google Scholar 

  57. W. Kohnen, Funktionentheorie 2. Lecture notes (2006), http://mathphys.fsk.uni-heidelberg.de/skripte/Files/Mathe/Funktionentheorie/Kohnen/FT2_zweiseitig.pdf

  58. M. Kontsevich, Lyapunov exponents and Hodge theory, in The Mathematical Beauty of Physics. Advanced Series in Mathematical Physics, vol. 24 (World Scientific, Singapore, 1997), pp. 318–332

    Google Scholar 

  59. M. Kontsevich, A. Zorich, Connected Components of the Moduli Spaces of Abelian Differentials with Prescribed Singularities. Invent. Math. 153, 631–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  60. S. Krantz, Complex Analysis: The Geometric Viewpoint (The Mathematical Association of America, Providence, 1990)

    MATH  Google Scholar 

  61. S. Lang, \(\mathrm{SL}_{2}(\mathbb{R})\) (Springer, Berlin, 1985)

    Google Scholar 

  62. E. Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities. Comment. Math. Helv. 79, 471–501 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  63. E. Lanneau, D.-M. Nguyen, Teichmüller curves generated by Weierstrass Prym eigenforms in genus three and genus four (2011), arXiv: 1111.2299

    Google Scholar 

  64. A. Leutbecher, Über die Heckeschen Gruppen \(G(\Lambda )\), Abh. Math. Sem. Univ. Hamburg 31, 199–205 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  65. G. Margulis, Discrete Subgroups of Semi-simple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 17 (Springer, Berlin, 1989)

    Google Scholar 

  66. H. Masur, Interval exchange transformations and measured foliations. Ann. Math. 115, 168–200 (1982)

    Article  MathSciNet  Google Scholar 

  67. H. Masur, Ergodic theory of translation surfaces, in Handbook of Dynamical Systems, vol. 1B, ed. by A. Katok, B. Hasselblatt (Elsevier B.V., Amsterdam, 2006)

    Google Scholar 

  68. H. Masur, S. Tabachnikov, Rational billiards and flat structures, in Handbook of Dynamical Systems, vol. 1A, ed. by A. Katok, B. Hasselblatt (Elsevier, Amsterdam, 2002)

    Google Scholar 

  69. J. May, Notes on Dedekind Rings (2009), http://www.math.uchicago.edu/~may/MISC/Dedekind.pdf

  70. C. Mclachlan, Introduction to arithmetic Fuchsian groups, in Topics on Riemann Surfaces and Fuchsian groups. London Mathematical Society Lecture Note Series, vol. 287 (Cambridge University Press, Cambridge, 2001), pp. 29–41

    Google Scholar 

  71. C. Mclachlan, A. Reid, The Arithmetic of Hyperbolic 3-Manifolds (Springer, Berlin, 2003)

    Book  Google Scholar 

  72. C. McMullen, Billiards and Hilbert modular surfaces. J. Am. Math. Soc. 16(4), 857–885 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  73. C. McMullen, Teichmüller geodesics of infinite complexity. Acta Math. 191, 191–223 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  74. C. McMullen, Teichmüller curves in Genus Two: discriminant and spin. Math Ann. 333, 87–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  75. C. McMullen, Prym varieties and Teichmüller curves. Duke Math. J. 133, 569–590 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  76. C. McMullen, Teichmüller curves in genus two: torsion divisors and ratios of sines. Invent. Math. 165, 651–672 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  77. C. McMullen, Foliations of Hilbert modular surfaces. Am. J. Math. 129, 183–215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  78. T. Miyake, Modular Forms (Springer, Berlin, 1989)

    MATH  Google Scholar 

  79. M. Möller, Variations of Hodge structures of Teichmüller curves. J. AMS 19, 327–344 (2006)

    MATH  Google Scholar 

  80. M. Möller, Affine groups of flat surfaces, in Handbook of Teichmüller Theory, vol. II, ed. by A. Papadopoulos, pp. 369–387 (2009)

    Google Scholar 

  81. M. Möller, Teichmüller curves from the viewpoint of algebraic geometry, preprint (2011)

    Google Scholar 

  82. M. Möller, Theta derivatives and Teichmüller curves (Arbeitstagung 2011) (2011), http://www.math.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/moeller

  83. M. Möller, Prym covers, theta functions and Kobayashi geodesics in Hilbert modular surfaces, preprint (2011)

    Google Scholar 

  84. M. Möller, M. Bainbridge, Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus three, preprint (2009)

    Google Scholar 

  85. M. Möller, E. Viehweg, Kobayashi geodesics in \(\mathcal{A}_{g}\). J. Diff. Geom. 86, 355–379 (2010)

    MATH  Google Scholar 

  86. M. Möller, D.B. Zagier, Theta derivatives and Teichmüller curves, preprint (2011)

    Google Scholar 

  87. S. Müller-Stach, J. Piontkowski, Elementare und algebraische Zahlentheorie (Vieweg Verlag, Wiesbaden, 2006)

    Google Scholar 

  88. R. Mukamel, Orbifold points on Teichmüller curves and Jacobians with complex multiplication, Dissertation, Harvard University, 2011

    Google Scholar 

  89. R. Mukamel, Fundamental domains and generators for lattice Veech groups, preprint (2012)

    Google Scholar 

  90. K. Murty, Introduction to Abelian Varieties. CRM Monograph (American Mathematical Society, 1993)

    Google Scholar 

  91. J. Neukirch, Algebraic Number Theory (Springer, Berlin, 2005)

    Google Scholar 

  92. M. Newman, Integral Matrices (Academic, London, 1972)

    MATH  Google Scholar 

  93. A. Prestel, Die elliptischen Fixpunkte der Hilbertschen Modulgruppen. Math. Ann. 177, 181–209 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  94. J. Robertson, Computing in Quadratic Orders (2009), http://www.jpr2718.org/quadr.pdf

  95. J. Rosenberg, Algebraic K-Theory and Its Applications (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  96. G. Rosenberger, All generating pairs of all two-generator Fuchsian groups. Arch. Math. 46, 198–204 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  97. E. Reyssat, Quelques Apspects des Surfaces de Riemann (Birkhäuser, Boston, 1989)

    Google Scholar 

  98. M. Schlichenmaier, An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces. Lecture Notes in Physics, vol. 322 (Springer, Berlin, 1989)

    Google Scholar 

  99. A. Schmidt, Einführung in die algebraische Zalhentheorie (Springer, Berlin, 2007)

    Google Scholar 

  100. G. Schmithüsen, Veech Groups of Origamis, Dissertation, Universität Karlsruhe, 2005

    Google Scholar 

  101. P. Schmutz-Schaller, J. Wolfart, Semi-arithmetic Fuchsian groups and modular embeddings. J. Lond. Math. Soc. 61(2), 13–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  102. M. Seppälä, T. Sorvali, Geometry of Riemann Surfaces and Teichmüller Spaces (North-Holland, Amsterdam, 1992)

    MATH  Google Scholar 

  103. G. Shimura, Introduction to the Theory of Automorphic Functions (Princeton University Press, Princeton, 1971)

    MATH  Google Scholar 

  104. R. Silhol, Genus 2 translations surfaces with an order 4 automorphism, in The Geometry of Riemann Surfaces and Abelian Varieties, ed. by J. Porras et al. (American Mathematical Society, Providence, 2006), pp. 207–213

    Chapter  Google Scholar 

  105. D. Singerman, Subgroups of Fuchsian groups and finite permutation groups. Bull. Lond. Math. Soc. 2, 319–323 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  106. D. Singerman, Finitely maximal Fuchsian groups. J. Lond. Math. Soc. 2(6), 29–38 (1972)

    Article  MathSciNet  Google Scholar 

  107. P. Stevenhagen, The number of real quadratic fields having units of negative norm. Exp. Math. 2(2), 121–136 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  108. K. Takeuchi, A characterization of arithmetic Fuchsian groups. J. Math. Soc. Jpn. 27(4), 600–612 (1975)

    Article  MATH  Google Scholar 

  109. G. van der Geer, Hilbert Modular Surfaces (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  110. W.A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math. 97(3), 553–583 (1989)

    MATH  MathSciNet  Google Scholar 

  111. M. Viana, Dynamics of Interval Exchange Transformations and Teichmüller flows (2008), http://www.impa.br/~viana/out/ietf.pdf

  112. J. Vilms, Totally geodesic maps. J. Diff. Geom. 4, 73–79 (1970)

    MATH  MathSciNet  Google Scholar 

  113. R. Voroberts, Planar structure and billiards in rational polygons: the Veech alternative. Russ. Math. Surv. 51(5), 779–817 (1996)

    Article  Google Scholar 

  114. A. Weil, Zum Beweis des Torellischen Satzes. Nachr. Akad. Wiss. Gött. IIa, 33–53 (1957)

    Google Scholar 

  115. P. Weinberger, On Euclidean Rings of Algebraic Integers. Analytic number theory (Proceedings of Symposium on Pure Mathematics, vol. XXIV, St. Louis University, St. Louis, 1972) (American Mathematical Society, Providence, 1973), pp. 321–332

    Google Scholar 

  116. C. Weiß, Hecke Operators and Orthogonality on \(\Gamma _{1}[N]\), Diplomarbeit, Universität Heidelberg, 2008

    Google Scholar 

  117. G. Weitze-Schmithüsen, Projection of Veech groups of square-tiled surfaces, preprint (2012)

    Google Scholar 

  118. D.B. Zagier, Zetafunktionen und quadratische Zahlklörper (Springer, Berlin, 1981)

    Book  Google Scholar 

  119. A. Zemljakov, A. Katok, Topological transitivity of billiards in polygons. Mat. Zametki 18(2), 291–300 (1975)

    MathSciNet  Google Scholar 

  120. A. Zorich, Flat surfaces, in Frontiers in Number Theory, Physics and Geometry, vol. I, pp. 439–586 (P.E. Cartier et al., 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weiß, C. (2014). Introduction. In: Twisted Teichmüller Curves. Lecture Notes in Mathematics, vol 2104. Springer, Cham. https://doi.org/10.1007/978-3-319-04075-2_1

Download citation

Publish with us

Policies and ethics