Skip to main content

An Introduction to Trapped Ions, Scalability and Quantum Metrology

  • Chapter
  • First Online:
Quantum Information and Coherence

Part of the book series: Scottish Graduate Series ((SGS))

Abstract

This article presents an introductory overview of three separate experimental aspects of ion trapping. It begins by discussing the various conventional approaches to confining charged particles, along with standard experimental techniques for laser cooling, coherent spectroscopy and quantum state preparation. Ion heating, a potential obstacle to experiments in quantum coherence is also discussed. For trapped ions to continue to advance in the field of quantum information, scalable trapping arrays are considered an essential technological component. Examples of the various approaches which have been pursued are outlined. A specific case study of a microtrap developed at NPL is presented, to exemplify the considerations needed in creating an operational device. A significant application of trapped ions is in quantum metrology, and more specifically in optical atomic clocks. The operational principle of a single-ion clock is described, and candidate species are highlighted. Advanced techniques for quantum state preparation and readout can now be used to enable frequency comparisons with unprecedented precision. This suggests that trapped ions will offer new levels of measurement sensitivity, the impact of which could range across optical atomic clocks, fundamental physics and navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eichmann, U., et al.: Young interference experiment with light scattered from 2 atoms. Phys. Rev. Lett. 70, 2359–2362 (1993)

    Article  ADS  Google Scholar 

  2. Margolis, H.S.: Optical frequency standards and clocks. Contemp. Phys. 51, 37–58 (2010)

    Article  ADS  Google Scholar 

  3. Chou, C.W., Hume, D.B., Koelemeij, J.C.J., Wineland, D.J., Rosenband, T.: Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104, 070802 (2010)

    Article  ADS  Google Scholar 

  4. Ladd, T.D., et al.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  5. Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)

    Article  ADS  Google Scholar 

  6. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    Article  ADS  Google Scholar 

  7. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    Article  ADS  Google Scholar 

  8. Madsen, M.J., Hensinger, W.K., Stick, D., Rabchuk, J.A., Monroe, C.: Planar ion trap geometry for microfabrication. Appl. Phys. B-Lasers Opt. 78, 639–651 (2004)

    Article  ADS  Google Scholar 

  9. Barwood, G.P., Edwards, C.S., Gill, P., Klein, H.A., Rowley, W.R.C.: Observation of the \(5s^2S_{1/2} 4d ^2D_{5/2}\) transition in a single laser-cooled trapped \(Sr^+\) ion by using an all-solid-state system of lasers. Opt. Lett. 18, 732–734 (1993)

    Article  ADS  Google Scholar 

  10. Barwood, G.P., Gill, P., Huang, G., Klein, H.A., Rowley, W.R.C.: Sub-kHz “clock” transition linewidths in a cold trapped \(^{88}Sr^+\) ion in low magnetic fields using 1092 nm polarisation switching. Opt. Commun. 151, 50–55 (1998)

    Article  ADS  Google Scholar 

  11. Roos, C., et al.: Quantum state engineering on an optical transition and decoherence in a Paul trap. Phys. Rev. Lett. 83, 4713–4716 (1999)

    Article  ADS  Google Scholar 

  12. Schrama, C.A., Peik, E., Smith, W.W., Walther, H.: Novel miniature ion traps. Opt. Commun. 101, 32–36 (1993)

    Article  ADS  Google Scholar 

  13. Sinclair, A.G., Wilson, M.A., Gill, P.: Improved three-dimensional control of a single strontium ion in an endcap trap. Opt. Commun. 190, 193–203 (2001)

    Article  ADS  Google Scholar 

  14. Margolis, H.S., et al.: Hertz-level measurement of the optical clock frequency in a single Sr-88(+) ion. Science 306, 1355–1358 (2004)

    Article  ADS  Google Scholar 

  15. King, S.A., et al.: Absolute frequency measurement of the S-2(1/2)-F-2(7/2) electric octupole transition in a single ion of \(^{171}Yb^+\) with \(10^{-15}\) fractional uncertainty. N. J. Phys. 14, 013045 (2012)

    Article  Google Scholar 

  16. Berkeland, D.J., Miller, J.D., Bergquist, J.C., Itano, W.M., Wineland, D.J.: Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998)

    Article  ADS  Google Scholar 

  17. NŁgerl, H.C., et al.: Investigating a qubit candidate: spectroscopy on the S-1/2 to D-5/2 transition of a trapped calcium ion in a linear Paul trap. Phys. Rev. A 61, 023405 (2000)

    Google Scholar 

  18. Schmidt-Kaler, F., et al.: How to realize a universal quantum gate with trapped ions. Appl. Phys. B-Lasers Opt. 77, 789–796 (2003)

    Article  ADS  Google Scholar 

  19. http://www.iontrap.umd.edu/research_info/ioncatalog/index.html

  20. Gulde, S., et al.: Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments. Appl. Phys. B-Lasers Opt. 73, 861–863 (2001)

    Article  ADS  Google Scholar 

  21. Lucas, D.M., et al.: Isotope-selective photoionization for calcium ion trapping. Phys. Rev. A 69, 012711 (2004)

    Article  ADS  Google Scholar 

  22. Kjaergaard, N., Hornekaer, L., Thommesen, A.M., Videsen, Z., Drewsen, M.: Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization. Appl. Phys. B-Lasers Opt. 71, 207–210 (2000)

    Article  ADS  Google Scholar 

  23. Brownnutt, M., et al.: Controlled photoionization loading of Sr-88(+) for precision ion-trap experiments. Appl. Phys. B-Lasers Opt. 87, 411–415 (2007)

    Article  ADS  Google Scholar 

  24. Johanning, M., et al.: Resonance-enhanced isotope-selective photoionization of YbI for ion trap loading. Appl. Phys. B-Lasers Opt. 103, 327–338 (2011)

    Article  ADS  Google Scholar 

  25. Deslauriers, L., et al.: Efficient photoionization loading of trapped ions with ultrafast pulses. Phys. Rev. A 74, 063421 (2006)

    Article  ADS  Google Scholar 

  26. Letchumanan, V., Wilson, M.A., Gill, P., Sinclair, A.G.: Lifetime measurement of the metastable 4d D-2(5/2) state in Sr-88(+) using a single trapped ion. Phys. Rev. A 72, 012509 (2005)

    Article  ADS  Google Scholar 

  27. Dehmelt, H.G.: Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. (IM) 31, 83–87 (1982)

    Google Scholar 

  28. Blockley, C.A., Walls, D.F., Risken, H.: Quantum collapses and revivals in a quantized trap. Europhys. Lett. 17, 509–514 (1992)

    Article  ADS  Google Scholar 

  29. Wineland, D.J., Itano, W.M.: Laser cooling of atoms. Phys. Rev. A: Gen. Phys. 20, 1521–1540 (1979)

    Article  ADS  Google Scholar 

  30. Letchumanan, V., Gill, P., Riis, E., Sinclair, A.G.: Optical Ramsey spectroscopy of a single trapped Sr-88(+) ion. Phys. Rev. A 70, 033419 (2004)

    Article  ADS  Google Scholar 

  31. Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J.: Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996)

    Article  ADS  Google Scholar 

  32. Ramsey, N.F.: A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695 (1950)

    Article  ADS  Google Scholar 

  33. Wilpers, G., Binnewies, T., Degenhardt, C., Sterr, U., Helmke, J., Riehle, F.: Optical clock with ultracold neutral atoms. Phys. Rev. Lett. 89, 230801 (2002)

    Article  ADS  Google Scholar 

  34. Diedrich, F., Bergquist, J.C., Itano, W.M., Wineland, D.J.: Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989)

    Article  ADS  Google Scholar 

  35. Monroe, C., et al.: Resolved sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  36. Deslauriers, L., et al.: Zero-point cooling and low heating of trapped Cd-111(+) ions. Phys. Rev. A 70, 043408 (2004)

    Article  ADS  Google Scholar 

  37. Letchumanan, V., Wilpers, G., Brownnutt, M., Gill, P., Sinclair, A.G.: Zero-point cooling and heating-rate measurements of a single Sr-88(+) ion. Phys. Rev. A 75, 063425 (2007)

    Article  ADS  Google Scholar 

  38. Turchette, Q.A., et al.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  39. Deslauriers, L., et al.: Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  40. Epstein, R.J., et al.: Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

  41. Hughes, M.D., Lekitsch, B., Broersma, J.A., Hensinger, W.K.: Microfabricated ion traps. Contemp. Phys. 52, 505–529 (2011)

    Article  ADS  Google Scholar 

  42. Labaziewicz, J., et al.: Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2008)

    Article  ADS  Google Scholar 

  43. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  44. Schmidt-Kaler, F., et al.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    Article  ADS  Google Scholar 

  45. Monz, T., et al.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  46. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771783 (2000)

    Google Scholar 

  47. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  48. Home, J.P., et al.: Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Hanneke, D., et al.: Realization of a programmable two-qubit quantum processor. Nat. Phys. 6, 13–16 (2010)

    Article  Google Scholar 

  50. Blakestad, R.B., et al.: High-fidelity transport of trapped-ion qubits through an x-junction trap array. Phys. Rev. Lett. 102, 153002 (2009)

    Article  ADS  Google Scholar 

  51. Blakestad, R.B., et al.: Near-ground-state transport of trapped-ion qubits through a multidimensional array. Phys. Rev. A 84, 032314 (2011)

    Article  ADS  Google Scholar 

  52. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  53. Schulz, S.A., Poschinger, U., Ziesel, F., Schmidt-Kaler, F.: Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap. N. J. Phys. 10, 045007 (2008)

    Article  Google Scholar 

  54. Seidelin, S., et al.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  Google Scholar 

  55. Stick, D., et al.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36–39 (2006)

    Article  Google Scholar 

  56. Allcock, D.T.C., et al.: Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect. N. J. Phys. 12, 053026 (2010)

    Article  Google Scholar 

  57. Stick, D., Fortier, K.M., Haltli, R., Highstrete, C., Moehring, D.L., Tigges, C., Blain, M.G.: Demonstration of a microfabricated surface electrode ion trap. arXiv:1008.0990v2 (2010)

  58. Moehring, D.L., et al.: Design, fabrication and experimental demonstration of junction surface ion traps. N. J. Phys. 13, 075018 (2011)

    Article  Google Scholar 

  59. Amini, J.M., et al.: Toward scalable ion traps for quantum information processing. N. J. Phys. 12, 033031 (2010)

    Article  Google Scholar 

  60. Labaziewicz, J., et al.: Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)

    Article  ADS  Google Scholar 

  61. Wang, S.X., et al.: Superconducting microfabricated ion traps. Appl. Phys. Lett. 97, 244102 (2010)

    Article  ADS  Google Scholar 

  62. Britton, J., et al.: Scalable arrays of rf Paul traps in degenerate Si. Appl. Phys. Lett. 95, 173102 (2009)

    Article  ADS  Google Scholar 

  63. Amini, J.M., Britton, J., Leibfried, D., Wineland, D.J.: Micro-fabricated chip traps for ion. In: Reichel, J., Vuleti, V. (eds.) Atom Chips. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  64. Brownnutt, M., Wilpers, G., Gill, P., Thompson, R.C., Sinclair, A.G.: Monolithic microfabricated ion trap chip design for scaleable quantum processors. N. J. Phys. 8, 232 (2006)

    Article  Google Scholar 

  65. See, P., Wilpers, G., Gill, P., Sinclair, A. G.: Fabrication of a monolithic array of three dimensional Si-based ion traps (to be published)

    Google Scholar 

  66. Wilpers, G., See, P., Gill, P., Sinclair, A.G.: A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotechnol. 7, 572–576 (2012)

    Article  ADS  Google Scholar 

  67. Wesenberg, J.H., et al.: Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)

    Article  ADS  Google Scholar 

  68. Daniilidis, N., et al.: Fabrication and heating rate study of microscopic surface electrode ion traps. N. J. Phys. 13, 013032 (2011)

    Article  Google Scholar 

  69. Cook, A.H.: Quantum metrology: standards of measurement based on atomic and quantum phenomena. Rep. Prog. Phys. 35, 463–528 (1972)

    Article  ADS  Google Scholar 

  70. Leibfried, D., et al.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  71. Roos, C.F., Chwalla, M., Kim, K., Riebe, M., Blatt, R.: “Designer atoms” for quantum metrology. Nature 443, 316–319 (2006)

    Article  ADS  Google Scholar 

  72. Szymaniec, K., Park, S.E., Marra, G., Chalupczak, W.: First accuracy evaluation of the NPL-CsF2 primary frequency standard. Metrologia 47, 363–376 (2010)

    Article  ADS  Google Scholar 

  73. Li, R., Gibble, K., Szymaniec, K.: Improved accuracy of the Npl-csf2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia 48, 283–289 (2011)

    Article  ADS  Google Scholar 

  74. Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward. H.: Laser phase and frequency stabilisation using an optical resonator. Appl. Phys. B-Lasers Opt. 31, 97–105 (1983)

    Google Scholar 

  75. Barwood, G.P., Gill, P., Huang, G., Klein, H.A.: Observation of a Sub-10-Hz linewidth Sr-88(+) S-2(1/2)-D-2(5/2) clock transition at 674 nm. IEEE Trans. Instrum. Meas. 56, 226–229 (2007)

    Article  Google Scholar 

  76. Chwalla, M., et al.: Absolute frequency measurement of the Ca-40(+) 4s S-2(1/2)-3d D-2(5/2) clock transition. Phys. Rev. Lett. 102, 023002 (2009)

    Article  ADS  Google Scholar 

  77. Tamm, C., Weyers, S., Lipphardt, B., Peik, E.: Stray-field-induced quadrupole shift and absolute frequency of the 688-THz Yb-171(+) single-ion optical frequency standard. Phys. Rev. A 80, 043403 (2009)

    Article  ADS  Google Scholar 

  78. Oskay, W.H., et al.: Single-atom optical clock with high accuracy. Phys. Rev. Lett. 97, 020801 (2006)

    Article  ADS  Google Scholar 

  79. Huntemann, N., et al.: High-accuracy optical clock based on the octupole transition in Yb-171(+). Phys. Rev. Lett. 108, 090801 (2012)

    Article  ADS  Google Scholar 

  80. Roberts, M., et al.: Observation of an electric octupole transition in a single ion. Phys. Rev. Lett. 78, 1876–1879 (1997)

    Article  ADS  Google Scholar 

  81. Schmidt, P.O., et al.: Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  ADS  Google Scholar 

  82. Rosenband, T., et al.: Observation of the S-1(0)->(3)P0 clock transition in Al-27(+). Phys. Rev. Lett. 98, 220801 (2007)

    Article  ADS  Google Scholar 

  83. Rosenband, T., et al.: Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    Article  ADS  Google Scholar 

  84. Chou, C.W., Hume, D.B., Rosenband, T., Wineland, D.J.: Optical clocks and relativity. Science 329, 1630–1633 (2010)

    Article  ADS  Google Scholar 

  85. Lea, S.N.: Limits to time variation of fundamental constants from comparisons of atomic frequency standards. Rep. Prog. Phys. 70, 1473–1523 (2007)

    Article  ADS  Google Scholar 

  86. Godun, R., Gill, P. (private communication)

    Google Scholar 

  87. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  88. Wang, L.J., et al.: Absolute frequency measurement and high resolution spectroscopy of 115In + 5s 21S0-5s5p 3 P0 narrowline transition. Opt. Commun. 273, 526–531 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research at NPL which is cited in this article was supported by NPLs strategic research programme, the Pathfinder Metrology Programme of the UK National Measurement Office, the EU STREP project MICROTRAP, and the EU network SCALA. The author thanks G. Wilpers for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair Sinclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sinclair, A. (2014). An Introduction to Trapped Ions, Scalability and Quantum Metrology. In: Andersson, E., Öhberg, P. (eds) Quantum Information and Coherence. Scottish Graduate Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04063-9_9

Download citation

Publish with us

Policies and ethics