Skip to main content

Quantum Key Distribution

  • Chapter
  • First Online:
Quantum Information and Coherence

Part of the book series: Scottish Graduate Series ((SGS))

Abstract

Quantum Key Distribution (QKD) is the first practical application of the field of quantum information science that reached the commercial market. Here the basics principles of QKD are laid out. We discuss not only abstract concepts, but also make the connection to actual optical implementation of basic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that error free decoding does not imply data integrity. As Eve is in control of the cryptogram \(C\), she might modify it to \(C'\) which Bob might decode to message \(M'\) without any warning flags.

  2. 2.

    One example of signal states with this property will be the BB84 signals.

  3. 3.

    The term ‘Generating Non-orthogonal’ is not a standard term, and I am still looking for a more suitable name!

  4. 4.

    Note that any channel can be written as Completely Positive Trace Preserving Map from system \(A'\) to \(B\), which in turn can be represented as a unitary mapping the combined systems \((A',E')\) to \((B,E)\) by using sufficiently large and proper dimensioned systems \(E'\) and \(E\).

  5. 5.

    Note that often we know that the error rate is due to misalignment and dark counts in our detectors, but for a security analysis we have to work with the worst-case scenario that all observed imperfections are due to Eve. If one can guarantee somehow that the imperfections are out of Eve’s control, then one can in principle take account of this in the security proofs. However, it turns out that it is not easy to give convincing arguments that something is outside of Eve’s control, and moreover, the resulting security analysis will become technically much harder.

  6. 6.

    Actually, it is possible to separate the success of error correction from the other properties.

  7. 7.

    Note that there are QKD protocols which use the same signals states and measurements as in the BB84 protocol but a different post-processing route, resulting in an increased error threshold.

References

  1. Welsh, D.: Codes and Cryptography. Oxford University Press, New York (1988)

    Google Scholar 

  2. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  3. Bruss, D., Lütkenhaus, N.: Quantum key distribution: from principles to practicalities. Appl. Algebra Eng. Commun. Comput. 10(4–5), 383–399 (2000)

    MATH  Google Scholar 

  4. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  7. Wiesner, S.: Conjugate coding. SIGACT News 15, 78 (1983)

    Article  Google Scholar 

  8. Alleaume, R., Bouda, J., Cyril, B., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Länger, T., Leverrier, A., Lütkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: SECOQC white paper on quantum key distribution and cryptography. arXiv: quant-ph/0701168v1 (2007)

    Google Scholar 

  9. Stebila, D., Mosca, M., Lütkenhaus, N.: The case for QKD. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds.) Proceedings of QuantumCom2009. LNICST, vol. 36, pp. 283–296. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (2010)

    Google Scholar 

  10. Ioannou, L.M., Mosca, M.: Unconditionally-secure and reusable public-key authentication. arXiv:1108.2887 (2011)

    Google Scholar 

  11. Mosca, M., Stebila, D., Ustaoglu, B.: Quantum key distribution in the classical authenticated key exchange framework. In: Proceedings of PQCRYPTO 2013. Lecture Notes in Computer Science, vol. 7932. Springer, New York (2013)

    Google Scholar 

  12. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  13. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Helleseth, T. (ed.) Advances in Cryptology—EUROCRYPT ’93. Lecture Notes in Computer Science, vol. 765, pp. 410–423. Springer, Berlin (1994)

    Google Scholar 

  14. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–655 (1948)

    Article  MathSciNet  Google Scholar 

  15. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337–4347 (2009)

    Article  Google Scholar 

  16. Serfling, R.J.: Probability indqualities for the sum in sampling without replacement. Ann. Stat. 2(1), 39–48 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, ETH Zürich (2005)

    Google Scholar 

  18. Müller-Quade, Jörn, Renner, Renato: Composability in quantum cryptography. New J. Phys. 11, 085006 (2009)

    Article  MathSciNet  Google Scholar 

  19. Devetak, I., Winter, A.: Distillation of secret key entanglement from quantum states. Proc. R. Soc. Lond. Ser. A 461(2053), 207–235 (2005)

    Google Scholar 

  20. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72(1), 012332 (2005)

    Google Scholar 

  21. Lütkenhaus, N.: Estimates for practical quantum cryptography. Phys. Rev. A 59, 3301–3319 (1999)

    Article  ADS  Google Scholar 

  22. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  23. Koashi, M., Adachi, Y., Yamamoto, T., Imoto, N.: Security of entanglement-based quantum key distribution with practical detectors. arXiv: 0804.0891 (2008)

    Google Scholar 

  24. Moroder, T., Curty, M., Lütkenhaus, N.: Detector decoy quantum key distribution. New J. Phys. 11, 045008 (2009)

    Article  ADS  Google Scholar 

  25. Beaudry, N.J., Moroder, T., Lütkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101, 093601 (2008)

    Article  ADS  Google Scholar 

  26. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3(4), 275–278 (1972)

    Article  ADS  MATH  Google Scholar 

  27. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MATH  Google Scholar 

  28. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 57901 (2003) (decoy)

    Google Scholar 

  29. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  30. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  31. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 8 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Lütkenhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Norbert Lutkenhaus

About this chapter

Cite this chapter

Lütkenhaus, N. (2014). Quantum Key Distribution. In: Andersson, E., Öhberg, P. (eds) Quantum Information and Coherence. Scottish Graduate Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04063-9_5

Download citation

Publish with us

Policies and ethics