Advertisement

Evaluation of Cashew Apple Bagasse for Xylitol Production

  • F. C. S. LimaEmail author
  • F. L. H. Silva
  • J. P. Gomes
  • M. B. Muniz
  • A. M. Santiago
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 48)

Abstract

In this chapter is presented the general features and theoretical foundations about the topic, as its importance, consequence and transformation of the lignocellulosic residues in biotechnological processes; xylitol and its importance in biotechnological production, fermentation process and kinetic study. After, are presented the procedures of the experimental study that aimed to evaluate the potential of the liquor obtained from the cashew apple bagasse, for the production of xylitol, through the fermentation kinetics and fermentative parameter. The experimental work has shown that C. guilliermondii was able to consume xylose in all fermentations performed with greater production of xylitol of 2953.19 mg/L in 12 h of fermentation, obtaining volumetric productivity of xylitol, the factor and the efficiency of conversion of xylose to xylitol 0.108 g/L h, 90.70 and 98.99 %, respectively.

Keywords

Xylitol Acid hydrolysis Fermentation 

References

  1. 1.
    Leitão, V.F., Gottschalk, L.M.F., Ferrara, M.A., Nepomuceno, A.L., Molinari, H.B.C., Bom, E.P.S.: Biomass residues in Brazil: availability and potential uses. Waste Biomass Valorization 1, 65–76 (2010)CrossRefGoogle Scholar
  2. 2.
    Michel, A.C.S., Flôres, S.H., Hertz, P.F., Matos, G.S., Ayub, M.A.Z.: Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour. Technol. 99(8), 2898–2904 (2008)CrossRefGoogle Scholar
  3. 3.
    Wei, J., Yuan, Q., Wang, T., Wang, L.: Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front. Chem. Eng. China 4, 57–64 (2010)CrossRefGoogle Scholar
  4. 4.
    Galbe, M., Zacchi, G.: Production of ethanol from lignocellulosic materials—bioethanol from sugarcane: R &D to productivity and sustainability. Luis Augusto Barbosa Cortez, São Paulo: Parte 4, Cap.12, Blucher, 697–716 (2010)Google Scholar
  5. 5.
    Oliveira, V.H.D., Andrade, A.P.S.: Integrated cashew production. Opening doors for quality. http://www.cnpat.embrapa.br/pif/artigo1/agroanalyse/index.html. Accessed on 07 April 2012 (In Portuguese)
  6. 6.
    Rodrigues, J.A.R.: Ingenuity to the biorefinery. The sugar mill as an industrial undertaking for the generation of biofuel and biochemical products. New Chem. 1, 1–13 (2011). (In Portuguese)Google Scholar
  7. 7.
    Sheehan, J.J.: Biofuels and the conundrum of sustainability. Curr. Opin. Biotechnol. 20, 318–324 (2009)CrossRefGoogle Scholar
  8. 8.
    Canakci, M., Sanli, H.: Biodiesel production from various feed stocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol. 35, 431–441 (2008)CrossRefGoogle Scholar
  9. 9.
    Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)CrossRefGoogle Scholar
  10. 10.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83(1), 1–11 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mussato, S.I., Teixeira, J.A.: Lignocellulose as raw material in fermentation processes. Appl. Microbiol. Microb. Biotechnol. 897–907 (2010)Google Scholar
  12. 12.
    Stambuk, B.U., Eleutherio, E.C.A., Florez-Pardo, L.M., Souto-Maior, A., Bom, E.P.S.: Brazilian potential for biomass ethanol: Challenge of using hexose and pentose co-fermenting yeast strains. J. Sci. Ind. Res. 67, 918–926 (2008)Google Scholar
  13. 13.
    Morais, S.A.L., Nascimento, E.A., Melo, D.C.: Análise da madeira de Pinus oocarpa. Parte—Estudo dos constituintes macromoleculares e extrativos voláteis. Tree magazine 29(3), 461–470 (2005). (In Portuguese)Google Scholar
  14. 14.
    Cruz, J.M., Domínguez, J.M., Domínguez, H., Parajó, J.C.: Preparation of fermentation media from agricultural wastes and their bioconversion to xylitol. Food Biotechnol.14(1–2), 79–97 (2000)Google Scholar
  15. 15.
    Santos, F.A., de Queiroz, J.H., Colodette, J.L., Fernandes, S.A., Guimarães, V.M., Rezende, S.T.: Potential straw cane sugar for ethanol production. New Chem. 35(5), 1004–1010 (2012). (In Portuguese)Google Scholar
  16. 16.
    Shoudham, V.P., Rodriguez, D.R., Rocha, G.J.M., Taherzadeh, M.J., Martin, E.C.: Acetosolv delignification of marabou (Dichrostachys cinerea) wood with and without acid prehydrolysis. For. Stud. China 13(1), 64–70 (2011)CrossRefGoogle Scholar
  17. 17.
    Silva Neto, J.M., Silva, F.L.H., Lima, E.E., Torres Neto, A.B., Lima, F.C.S.: Analysis of acid pretreatment of the cashew apple bagasse. In: Brazilian Congress of Scientific Initiation of Chemical Engineering, 9, Maringá, Paraná, 2011, pp. 1–6, (In Portuguese)Google Scholar
  18. 18.
    Silva, D.D.V., Mancilha, I.M., Silva, S.S., Felipe, M.G.A.: Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Braz. Arch. Biol. Technol. 50, 207 (2007)CrossRefGoogle Scholar
  19. 19.
    Silva, J.P.A., Mussatto, S.I., Roberto, I.C.: The influence of initial xylose concentration, agitation and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl. Biochem. Biotechnol. 162, 1306–1315 (2010)CrossRefGoogle Scholar
  20. 20.
    Rocha, M.V.P., Rodrigues, T.H.S., Melo, V.M.M., Gonçalves, L.R.B., Macedo, G.R.: Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J. Ind. Microbiol. Biotechnol. 38(8), 1099–1107 (2011)CrossRefGoogle Scholar
  21. 21.
    Dos S. Lima, F.C., da Silva, F.L.H., Gomes, J.P., Silva Neto, J.M.: Chemical composition of the cashew apple bagasse and potential use for ethanol production. Adv. Chem. Eng. Sci. 2, 519–523 (2012)Google Scholar
  22. 22.
    Aragão, R.F.: Drying slices of cashew (Anacardium Occidentalel), tray dryer. Thesis, Federal University Campina Grande, 126p (2007) (In Portuguese)Google Scholar
  23. 23.
    Agostini-Costa, T.S., Vieira, R.F., Naves, R.V.: Cashew, tropical identity that exude shealth. Brazilian Society of Forest Engineers (2006). www.cenargen.embrapa.br/cenargenda/divulgacao2006/sbef220106.pdf/. Accessed on July 2012 (In Portuguese)
  24. 24.
    Mazzetto, S.E., Lomonaco, D., Mele, G.: Oil of cashew nuts: opportunities and challenges in the development and industrial sustainability. New Chem. 32(3), 732–721 (2009) (In Portuguese)Google Scholar
  25. 25.
    Lopes, M.M.A., Moura, C.F.H., Aragão, F.A.S., Cardoso, T.G., Eneas Filho, J.: Physical characterization of stems of dwarf cashew clones at different stages of maturation. Agron. Sci. J. 42(4), 914–920 (2011) (In Portuguese)Google Scholar
  26. 26.
    Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P.: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48(8), 3713–3729 (2009)CrossRefGoogle Scholar
  27. 27.
    Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Lukasik, R.: Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101(13), 4775–4800 (2010)CrossRefGoogle Scholar
  28. 28.
    Talebnia, F., Karakashev, D., Angelidaki, I.: Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol. 101(13), 4744–4753 (2010)CrossRefGoogle Scholar
  29. 29.
    Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J.: A comparison of chemical pretreatment methods for improving sacarification of cotton stalks. Bioresour. Technol. 98(16), 3000–3011 (2007)CrossRefGoogle Scholar
  30. 30.
    Mussato, S.I., Roberto, I.C.: Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. Biotechnol. Prog. 20(1), 134–139 (2004)CrossRefGoogle Scholar
  31. 31.
    Saha, B.C., Cotta, M.A.: Ethanol production from alkaline peroxide pretreated enzymatically saccharified, wheat straw. Biotechnol. Prog. 22, 449–453 (2006)CrossRefGoogle Scholar
  32. 32.
    Parazzi, C.: Raw materials of fermentation ethanol (2006). http://www.cca.ufscar.br/~vico/2%20monitoramento/2%20Materia%20prima.pdf. Accessed on 28 Nov 2012 (In Portuguese)
  33. 33.
    Misra, S., Gupta, P., Raghuwanshi, S., Dutt, K., Saxena, R.K.: Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep. Purif. Technol. 78(3), 266–273 (2011)CrossRefGoogle Scholar
  34. 34.
    Wei, J., Yuan, Q., Wang, T., Wang, L.: Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front. Chem. Eng. China 4, 57–64 (2010)CrossRefGoogle Scholar
  35. 35.
    Mäkinen, K.K.: Can the pentitolhexitol theory explain the clinical observations made with xylitol. Med. Hypotheses 54(4), 603–613 (2000)CrossRefGoogle Scholar
  36. 36.
    Hyvönen, L., Törmä, R.: Examination of sugars, sugar alcohols, and artificial sweeteners as substitutes for sucrose in strawberry jam. Keeping quality tests. J. Food Sci. 48(1), 186–192 (1983)CrossRefGoogle Scholar
  37. 37.
    Vernacchio, L., Vezina, R.M., Mitchell, A.A.: Tolerability of oral xylitol solution in young children: implications for otitis media prophylaxis. Int. J. Pediatr. Otorhinolaryngol. 71, 89–94 (2007)CrossRefGoogle Scholar
  38. 38.
    Pereira, R.S., Mussatto, S.I., Roberto, I.C.: Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J. Microbiol. Biotechnol. 38, 71–78 (2011)CrossRefGoogle Scholar
  39. 39.
    Mussatto, S.I., Roberto, I.C.: Xilitol: Edulcorante com efeitos benéficos para a saúde humana. Braz. J. Pharm. Sci. 38(4), 401–413 (2002)Google Scholar
  40. 40.
    Cassales, A.R., Souza-Cruz, P., Ayub, M.A.: Comparison of the ethanol production from hydrolysed soy hull sand synthetic medium used using microbial consortia. In: Symposium on Applied Microbiology, 3, Porto Alegre. Porto Alegre, 2009. CD-Rom (In Portuguese)Google Scholar
  41. 41.
    Cunha, M.A.A., Silva, S.S., Carvalho, W., Santos, J.C.: Use of immobilized cells of PVA gel: a new strategy for the biotechnological production of xylitol logic from bagasse of sugar. Seminary 26, 59–68 (2005). (In Portuguese)Google Scholar
  42. 42.
    Sarrouh, B.F., Silva, S.S.: Evaluation of the performance of a three-phase fluidized bed reactor with immobilized yeast cells for the biotechnological production of xylitol. Int. J. Chem. Reactor Eng. 6, 1–15 (2008)Google Scholar
  43. 43.
    Faveri, D., Torre, P., Perego, P., Converti, A.: Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology. J. Food Eng. 61(3), 407–412 (2004)CrossRefGoogle Scholar
  44. 44.
    Winkelhausen, E., Kuzmanova, S.: Microbial conversion of D-xylose to xylitol. J. Ferment. Bioeng. 86(1), 1–14 (1998)CrossRefGoogle Scholar
  45. 45.
    de Castro, A.M., Pereira Júnior, N.: Production, properties and application of cellulases in the hydrolysis of organic residues. New Chem. 33, 181–188 (2010). (In Portuguese)Google Scholar
  46. 46.
    Pinheiro, T.L.F., Menoncin, S., Domingues, N., Oliveira, D., Treichel, H., Luccio, M., Freire, D.M.G.: Production and partial characterization of lipase from Penicillium verrucosum obtained by submerged fermentation of conventional and industrial media. Sci. Food Technol. 28(2), 444–450 (2008)Google Scholar
  47. 47.
    Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G.: Bio-ethanol—the fuel of tomorrow from the residues of today. Trends. Biotechnol. 24(12), 549–556 (2006)CrossRefGoogle Scholar
  48. 48.
    Prakasham, R.S., Sreenivas, R.R., Hobbs, P.J.: Current trends in biotechnological production of xylitol and future prospects. Curr. Trends Biotechnol. Pharm. 3(1), 8–36 (2009)Google Scholar
  49. 49.
    Viegas, M.C.: Optimization of fermentation system using continuous reactors tower type and yeast characteristics with flocculants. UNICAMP, Campinas, Thesis, 150p (2003) (In Portuguese)Google Scholar
  50. 50.
    Gee, D.A.: Modelling, optimal control, state estimation, and parameter identification applied to a batch fermentation process. UC, Colorado. Thesis (1990) (In Portuguese)Google Scholar
  51. 51.
    Luong, J.H.T.: Kinetics of ethanol inhibition in alcohol fermentation. Biotechnology and Bioengineering, 280–285 (1985)Google Scholar
  52. 52.
    de Lima, E.E., da Silva, F.L.H., dos S. Lima, F.C.: Determination of the efficiency of the solvents in the extractive content of cashew apple pomace. In: National Symposium on Bioprocesss, 18, SINAFERM 2011, Caxias do Sul, CD-Rom (In Portuguese)Google Scholar
  53. 53.
    Nunes, B.R.P., Conrado, L.S.: Remoção de furfural e HMF utilizando argila vermiculita como Adsorvente In: National Symposium on Bioprocesss—SINAFERM, 18, 2011, Caxias do Sul, UCS, 2011, pp. 1–6. CD-Rom (In Portuguese)Google Scholar
  54. 54.
    Fonseca, C.R., Faria, L.F.F.: Production of ethanol and xylitol from hemicellulosic hydrolyzate detoxified. In: Brazilian Congress of Chemical Engineering, 19, Búzios/ RJ, COBEQ, 2012, pp. 4820–4829 (In Portuguese)Google Scholar
  55. 55.
    Bier, M.C.J., Maranhão, L.T., Azevedo, J.A.M., Silva Junior, L.S.: Growth and consumption of xylose by Candida guilliermondii in submerged fermentation of xylose using bagasse cane sugar. Evid. Mag. 7(2), 119–130 (2007)Google Scholar
  56. 56.
    Moutta, R.O., Rocha, G.J.M., Silva, S.S.: Optimization of the sugar cane straw hydrolysis conditions aiming the attainment of bioethanol. In: European Congress on Biotechnology, 14, Barcelona. New Biotechnology (2009)Google Scholar
  57. 57.
    Canilha, L., Carvalho, W., Silva, J.B.A.: Xylitol bioproduction from wheat straw: Hemicellulose hydrolysis and hydrolizate fermentation. J. Sci. Food Agric. 86, 1371–1376 (2006). (In Portuguese)CrossRefGoogle Scholar
  58. 58.
    Cândido, E.J.: Economic feasibility study of xylitol production from hemicellulose hydrolyzate of barley straw. USP, Lorena, Thesis, 157p (2008) (In Portuguese)Google Scholar
  59. 59.
    Bar, A.: Xylitol. In: O’Brein Nabors, L., Gelardi, R.C. (eds.) Alternative Sweeteners, 2nd edn., pp. 349–379. Marcel Dekkor Inc., New York (1991)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • F. C. S. Lima
    • 1
    Email author
  • F. L. H. Silva
    • 2
  • J. P. Gomes
    • 3
  • M. B. Muniz
    • 4
  • A. M. Santiago
    • 5
  1. 1.Federal Institute of Education, Science and Technology of Pernambuco—IFET/PECampus Belo JardimPernambucoBrazil
  2. 2.Department of Chemical Engineering, Center of TechnologyFederal University of Paraíba (UFPB)ParaibaBrazil
  3. 3.Department of Agricultural Engineering, Center of Science and TechnologyFederal University of Campina Grande (UFCG)ParaibaBrazil
  4. 4.Post-Graduate in Process Engineering, Center of Science and TechnologyFederal University of Campina Grande (UFCG)ParaibaBrazil
  5. 5.Department of Chemical, Center of Science and TechnologyState University of Paraiba (UEPB)ParaibaBrazil

Personalised recommendations