Advertisement

Solid State Fermentation: Fundamentals and Application

  • A. M. SantiagoEmail author
  • L. S. Conrado
  • B. C. A. Mélo
  • C. A. B. Sousa
  • P. L. Oliveira
  • F. C. S. Lima
Chapter
  • 1.1k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 48)

Abstract

This chapter deals with the solid state fermentation theme, divided into two main parts: the first part presents information about the technology in solid state fermentation (SSF), emphasizing their definitions, advantages and disadvantages, the factors that influence this process, and the second part is about an experimental study using this technique in the production of pectinolytic enzymes. This experimental study evaluated the potential of dehydrated guava bark used as substrate in the production of the exo-polygalacturonase enzyme, obtained through solid state fermentation, using the microorganism Aspergillus niger as the fermenting agent. In this study, it was verified the influence of the initial moisture of the medium and the concentration of an additional source of nitrogen, at a process temperature of 30 °C, having as response the enzymatic activity. The experimental work showed that the maximum production of the enzyme was detected with initial moisture of the culture medium of 50 % (wb) and source concentration of nitrogen of 1.0 %, reaching a peak of activity of 12.64 U/g at 30 h of fermentation.

Keywords

Pectinase Guava peel Fermentation 

References

  1. 1.
    Castilho, L.R., Medronho, R.A., Alves, T.L.M.: Production and extraction of pectinases obtained by solid state fermentation of agro-industrial residues with Aspergillus niger. Bioresour. Technol. 71, 45–50 (2000)CrossRefGoogle Scholar
  2. 2.
    Araújo, L.F.: Enriquecimento Protein Mandacaru without spines and Palma Forager by semi-solid fermentation. 2004. Ph.D. thesis in process engineering—Post-Graduate Program in process engineering. Federal University of Campina Grande, Paraíba (2004)Google Scholar
  3. 3.
    Pandey, A.: Solid-state fermentation. Biochem. Eng. J. 13(2), 81–84 (2003)CrossRefGoogle Scholar
  4. 4.
    Palma, M.B.: Production of xylanases by Thermoascusaurantiacus in solid state cultivation. 2003. 169f. Ph.D. thesis in chemical engineering. Federal University of Santa Catarina (2003)Google Scholar
  5. 5.
    Del Bianchi, V.L., Moraes, I.O., Capalbo, D.M.F.: Solid state fermentation. In: Schmidell, W., Lima, U.A., Aquarone, E., Borzani, W. (eds.) Industrial Biotechnology: Biochemical Engineering, vol. 2. Edgard Blucher Ltda., São Paulo (2001)Google Scholar
  6. 6.
    Pinto, G.A.S., Brito, E.S., Silva, F.L.H., Santos, S.F.M., Macedo, G.R.: Solid state fermentation; one alternative to the use and enhancement of agro-industrial waste. J. Ind. Chem. 74, 17–20 (2006)Google Scholar
  7. 7.
    Bramorski, A.: Characterization of growth and the production of volatile metabolites of filamentous fungi cultivated on substrates agribusiness. Master thesis, Federal University of Paraná (1997)Google Scholar
  8. 8.
    Lu, M.Y., Maddox, I.S., Brooks, J.D.: Aplication of a multi-layer packed-bed reactor to citric acid production in solid state fermentation system: a review. Process Biochem. 33(2), 117–123 (1998)Google Scholar
  9. 9.
    Orozco, A.L., Pérez, M.I., Guevara, O., Rodríguez, J., Hernández, M., González-vila, F.J., Polvillo, A.M.E.: Biotechnological enhancemente of coffe pulp residues by solid-state fermentation wuthstreptomyces Py-GC/MS analysis. J. Anal. Appl. Pyrol. 81, 247–252 (2008)CrossRefGoogle Scholar
  10. 10.
    Alcântara, S.R., Silva, F.L.H.: Moisture, pH, reducing sugars and poligalacturonásica activity in a process of solid state fermentation using tray reactor. In: 14th Brazilian Congress of EngenhariaQuímica (COBEQ), Búzios (2012)Google Scholar
  11. 11.
    Labuza, T.P.: Sorption phenomena in foods. Food Technol. 22(3), 263–272 (1988). Quoted by: Prado, M.E.T. et al.: Sorption isotherms of dates: experimental determination and evaluation of mathematical models. Food Sci. Techonol. 19(1). Campinas (1999)Google Scholar
  12. 12.
    Fellows, P.J.: Teconologia of Food Processing: Principles and Pratice. Fennema, 2nd edn, p. 602. Artmed, Porto Alegre (2006)Google Scholar
  13. 13.
    Leitão, M.F.F.: Water activity and microbiological changes of food. In: Garden, D.C.P, Germer, S.P.M. (eds.) Water Activity in Foods, pp. 1–8. ITA, Campinas (1997)Google Scholar
  14. 14.
    Fennema, O.R., Damodaran, S., Parkin, K.: Chemical Alimentos, 4th edn, p. 900. Artmed, Porto Alegre, (2010)Google Scholar
  15. 15.
    Castro, R.J.S., Freitas, A.C., Beserra, M.A., Vieira, J.M.M., Pinto, G.A.S.: Production of polygalacturonase from Aspergillus niger in solid state fermentation using as substrate rapeseed cake. In: em fermentação semi-sólida utilizando como substrate torta de canola. In: National Symposium Bioprocesses, Anais…Natal/RN, Natal/RN, 2–5 Aug 2009Google Scholar
  16. 16.
    Correia, R.T.P. Study of cultivation in semisolid residue pineapple by Saccharomyces cereviseae e Rhizopus oligosporus. 138f. Ph.D. thesis in chemical engineering, Post-Graduate Program in Chemical Engineering, Federal University of Rio Grande do Norte, Natal (2004)Google Scholar
  17. 17.
    Welti-Chanes, J, Vergura, B.F.: Actividad de água. Concepto y aplicaciónin foods with high content of humedad. In: Aguilera, J.M. (ed.) Issues in Technology Alimentos, vol. 1, pp. 11–43. México (1997)Google Scholar
  18. 18.
    Jay, J.M.: Microbiology of Food, 6th edn, p. 709. Artmed, Porto Alegre (2005)Google Scholar
  19. 19.
    Franco, B.D.G.M.: Food Microbiology, p. 182. Publisher-Atheneu, São Paulo (1999)Google Scholar
  20. 20.
    Martins, E.S.: Purification of thermostable polygalacturonases produced by the fungus Thermoascusaurantiacus through submerged fermentation and solid state fermentation and biochemical characterization of the same. 132f. Ph. D. thesis in biosciences, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, (2006)Google Scholar
  21. 21.
    Souza, R.L.A., Conrado, L.S.O., Silva, F.L.H., Amorim, B.C.: Characterzation of polygalacturonase produced by solid state fermentation using the passion fruit residue as substrate. Braz. J. Agro-industrial Prod. 14(9), 987–992 (2010)Google Scholar
  22. 22.
    Leite, N.J., Alcântara, S.R., Lima, F.C.S., Silva, F.L.H.: Study of the stability of the enzyme polygalacturonase against pH and temperature. In: Symposium on Science and Food Technology, Anais, Joao Pessoa, 12–14 Nov 2012Google Scholar
  23. 23.
    Bon, E.P.S., Ferreira, M.A.: Enzymes in Biotechnology Production, Application and Market, p. 506. Interscience, Rio de Janeiro (2008)Google Scholar
  24. 24.
    Raimbault, M., Deschamps, A., Meyer, F., Senez, J.C.: Direct protein enrichment of starchy products by fungal solid fermentation. In: Proceedings of Giam-V, Marseilles (1977)Google Scholar
  25. 25.
    Camargo, L.A., Dentillo, D.B., Cardeiro, L., Gattás, E.A.L.: Use of Orange bagasse in the production of pectinase from Aspergillus sp. Alim. Nutr. Araraquara 16(2), 153–156 (2005)Google Scholar
  26. 26.
    Patil, S.R., Dayanand, A.: Production of pectinases from deseeded sunflower head by Aspergillus nigerin submerged and solid-state conditions. Biores. Techonol. 97, 2054–2058 (2006)CrossRefGoogle Scholar
  27. 27.
    Imandi, Z.S.B., Bandaru, V.V.R., Somalanka, S.R., Bandaru, S.R., Garapati, H.R.: Aplication of statistical experimental designs for the optimization of médiumconstituintes for the production of citric acid from pineapple waste. Bioresour Technol. 99, 4445–4450 (2008)CrossRefGoogle Scholar
  28. 28.
    Nizamuddin, S., Sridevia, A., Narasimha G.: Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. Afr. J. Biotechnol. 7(8), 1096–1100 (2008)Google Scholar
  29. 29.
    Souza, R.L.A.: Pectinase production by solid state fermentation using as substrate residue of passion. 97f. Dissertation (Masters in Chemical Engineering), Post-Graduate Program in Chemical Engineering, Federal University of de Campina Grande, Campina Grande, PB (2008)Google Scholar
  30. 30.
    Okafor, U.A., Okochi, V.I., Shalom, N.C., Ebuehi. O.A. T., Okerenta, B.M.: Pectinolytic activity of wild-type filamentous fungi fermented on agro-wastes. Afr. J. Microbiol. 4(24), 2729–2734 (2010)Google Scholar
  31. 31.
    Rocha, C.P., Bailão, E.F.L., Coutinho, F.U., Cardoso, V.L.; Use of agro-industrial residues as substrate for the production of amylase and pectinase by Aspergillus niger. In: 18th National Symposium Bioprocesses, pp. 24–27. Proceedings….Caxias do Sul. Anais…Caxias do Sul/RS, CD-Rom (2011)Google Scholar
  32. 32.
    Díaz, A.B., Ory, I., Ildefonso, C., Blandini, A.: Enhance hydrolytic enzymes production by Aspergillus awamorion suplemented grape pomace. Food and Bioprod. Process. 90, 72–78 (2012)Google Scholar
  33. 33.
    Ruiz, H.A.; Rodríguez, J., Rodríguez, R., Contreras, J.C., Aguilar, C.N., Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreator. Biochem. Eng. J. 65, 90–95 (2012)Google Scholar
  34. 34.
    Chau, C.F., Huang, Y.L.: Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis I. Cv. Liucheng. J. Agric. Food Chem. 51, 2615–2618 (2003)CrossRefGoogle Scholar
  35. 35.
    Mitchell, D.A., Berovic, M., Krieger, N.: Biochemical engineering aspects of solid state bioprocessing. Adv. Biochem. Eng. Biotechnol. 68, 61–138 (2000)Google Scholar
  36. 36.
    Rocha, C.P.; Otimization of enzyme production by Aspergillus niger in solid state fermentation. 98 f. Dissertation (Masters in Chemical Engineering), Post-Graduate Program in Chemical Engineering, Federal University of Minas Gerais-Uberlândia, MG (2010)Google Scholar
  37. 37.
    Pelczar, J., Chan, E.C.S., Michael, J., Krieg, N.R.: Microbiology: Concepts and Applications, vol. 1, 2nd edn, p. 523. Mmakron Books, São Paulo (1996)Google Scholar
  38. 38.
    Alcântara, S.R, Silva, F.L.H.: Influence of spores concentration, moisture, ammonium sulphate concentration and temperature on polygalacturonase production using cashew apple in the solid state fermentation process. Chem. Eng. Trans. 24, 949–954 (2011)Google Scholar
  39. 39.
    Terzi, S.C., Carvalho, C.V.P., Oliveira, A.C.P., Couri, S.: Influence of varying the concentration of inoculum of Aspergillus niger 3T5B8 and humidity of fermentation médium on enzyme production polygalacturonase. In: 10th National Symposium Bioprocesses, Anais…Frorianópolis/SC, Florianópolis (2003)Google Scholar
  40. 40.
    Pandey, A., Selvakumar, P., Soccol., Nigam, P.: Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77, 149–162 (1999)Google Scholar
  41. 41.
    Ruiz, H.A., Rodríguez, J., Rodríguez, R., Contreras, J.C., Aguilar, C.N.: Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreator. Biochem. Eng. J. 65, 90–95 (2012)CrossRefGoogle Scholar
  42. 42.
    Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 10(9), 2931–2944 (2005)CrossRefGoogle Scholar
  43. 43.
    Uenojo, M., Pastore, G.M.: Pectinases: Aplicações industriais e perspectivas. Química Nova 30(2), 388–394 (2007)Google Scholar
  44. 44.
    Koblitz, M.G.B.: Food Biochemistry, Theory and Practical Applications, p. 242. Guanabara Koogan, Rio de Janeiro (2008)Google Scholar
  45. 45.
    Lara-Marquez, A., Zaval-Panamo, M.G., Lopez-Romero, E., Camacho, H.C.: Biotechnological potential of pectinolytic complexes of fungi. Biotechnol. Lett. 33, 859–868 (2011)CrossRefGoogle Scholar
  46. 46.
    Antier, P., Minjares, A., Roussos, S., Raimbault, M., Viniegra-Gonzalez, G.: Pectinase-hyperproducing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp. Enzyme Microbial. Technol. 15, 254–260 (1993)Google Scholar
  47. 47.
    Brazil’s Ministry of Health National Health Surveillance Agency: Physicochemical Methods for Food Analysis, p. 1017. MS Publisher, Brasília (2005)Google Scholar
  48. 48.
    Rangana, S.: Manual of analysis of fruit and vegetable products, p. 634. Tata McGraw Hill Publishing Company, New Delhi (1979)Google Scholar
  49. 49.
    Miller, G.L.: Use of dinitrosalicylic AID reagent for determination of reducing sugars. Analitica Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  50. 50.
    le Poidevin, N., Robinson, L.A.: Methods Used in the Diagnosis Of Leaf Plantations Booker Group in British Guiana: Sampling and Analysis Technique, 21st edn, pp. 3–11. Fertilité, Paris (1964)Google Scholar
  51. 51.
    Couri, S., Farias, A.X.: Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes. Revista de Microbiologia 26(4), 314–317 (1995)Google Scholar
  52. 52.
    Fontana, R.C., Salvador, S., Silveira, M.M.: Influence of pectin and glucose on growth and polygalacturonase production by Aspergillus niger in solid-state cultivation. J. Ind. Microbiol. Biotechnol. 32, 371–377 (2005)CrossRefGoogle Scholar
  53. 53.
    Munhoz, C.L., Argandoña, E.J.S., Júnior, S.S.M.: Physical and chemical properties of flour obtained from guavas CV Pedro Sato. In: 10th Brazilian Congresso of Tropical Fruits, 54th Annual Meeting of the International American Society for Tropical Horticulture, Vitória-Espírito Santo 12 a 17 de Outubro de (2008)Google Scholar
  54. 54.
    Malvessi, E., Silveiera, M.M.: Influence of medium composition and pH on the production of polygalacturonase by Aspergillus oryzae. Braz. Arch. Biol. Techonol. 47(5), 693–702 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. M. Santiago
    • 1
    Email author
  • L. S. Conrado
    • 2
  • B. C. A. Mélo
    • 3
  • C. A. B. Sousa
    • 4
  • P. L. Oliveira
    • 2
  • F. C. S. Lima
    • 5
  1. 1.Department of Chemical, Center of Science and TechnologyState University of Paraiba (UEPB)Campina GrandeBrazil
  2. 2.Academic Unit of Chemical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  3. 3.Science and Technology Federal Institute of EducationIF Sertão-PECampus PetrolinaBrazil
  4. 4.Post-Graduate in Process Engineering, Center of Science and TechnologyFederal University of Campina GrandeCampina GrandeBrazil
  5. 5.Science and TechnologyFederal Institute of Education – IFET/PECampus Belo JardimBrazil

Personalised recommendations