Advertisement

Convective Drying of Food: Foundation, Modeling and Applications

  • A. G. Barbosa de LimaEmail author
  • R. P. de Farias
  • W. P. da Silva
  • S. R. de Farias Neto
  • F. P. M. Farias
  • W. M. P. B. de Lima
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 48)

Abstract

This chapter focuses in a theoretical and experimental study of food dehydration with particular reference to drying of fruits and vegetables. Topics related to fundamentals, theory and effect of drying and modeling are presented and discussed. Application has been done to drying of banana fruit. Whole bananas were peeled manually and dried in an oven at temperatures ranging from 40 to 70 °C. Drying, heating and shrinkage lumped models were proposed and fitted to experimental data. Non-linear regression analyses were done to verify the consistence of the models to predict the experimental data. Results revealed which air temperature affect significantly moisture removal, heating and dimensions variations rates and quality of banana fruit. The fitted models presented good concordance with experimental data.

Keywords

Drying Experimental Lumped model Simulation 

Notes

Acknowledgements

The authors would like to express their thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), and FINEP (Financiadora de Estudos e Projetos, Brazil) for supporting this work; to the authors of the references in this paper that helped in our understanding of this complex subject, and to the Editors by the opportunity given to present our research in this book.

References

  1. 1.
    Sweat, V.E.: Thermal properties of foods. In: Rao, M.A., Rizvi, S.S.H. (eds.) Engineering properties of foods, pp. 99–138. Marcel Dekker Inc, New York (1995)Google Scholar
  2. 2.
    ASHRAE: Thermal properties of foods. In: ASHRAE Refrigeration Handbook. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., Atlanta. p. 8.1 (1998)Google Scholar
  3. 3.
    Sokhansanj, S.: Drying of foodstuffs. In: Mujumdar, A.S. (ed.) Handbook of industrial drying, vol. 1, pp. 589–625. Marcel Dekker Inc., New York (1995)Google Scholar
  4. 4.
    Wolf, W., Spiess, W.E.L., Jung, G.: Sorption isotherms and water activity of food materials. Elsevier, New York (1985)Google Scholar
  5. 5.
    Jayaraman, K.S., Das Gupta, D.K.: Drying of fruits and vegetables. In: Mujumdar, A.S. (ed.) Handbook of Industrial drying, vol. 1, pp. 643–690, Marcel Dekker, Inc., New York (1995)Google Scholar
  6. 6.
    Rizvi, S.S.H.: Thermodynamic properties of foods in dehydration, In: Rao M.A., Rizvi, S.S.H. (eds.) Engineering properties of foods. pp. 223–309. Marcel Dekker., New York (1995)Google Scholar
  7. 7.
    Strumillo, C., Kudra, T.: Drying: principles, science and design. Gordon and Breach Science Publishers, New York (1986)Google Scholar
  8. 8.
    Molnár, K.: Experimental techniques in drying. In: Mujumdar, A.S. (ed.) Handbook of Industrial drying, vol. 1, pp. 41–70. Marcel Dekker Inc., New York (1995)Google Scholar
  9. 9.
    Saravacos, G.D.: Mass transfer properties of foods. In: Rao, M.A., Rizvi, S.S.H. (eds.) Engineering properties of foods, pp. 169–221. Marcel Dekker Inc., New York (1995)Google Scholar
  10. 10.
    Bruin, S., Luyben, KChAM: Drying of food materials: a review of recent developments. In: Mujumdar, A.S. (ed.) Advances in drying, vol. 1, pp. 155–215. Hemisphere Publishing Corporation, Washington (1980)Google Scholar
  11. 11.
    Geankoplis, C.J.: Transport processes and unit operations, 2nd edn. Allyn and Bacon, Boston (1983)Google Scholar
  12. 12.
    van Brakel, J., Heertjes, P.M.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Transfer. 17, 1093–1103 (1974)CrossRefGoogle Scholar
  13. 13.
    Marinos-Kouris, D., Maroulis, Z.B.: Transport properties in the drying of solids. In: In: Mujumdar, A. S. (ed.) Handbook of Industrial drying, vol. 1, pp. 113–159. Marcel Dekker, Inc., New York (1995)Google Scholar
  14. 14.
    Marousis, S.N., Saravacos, G.D.: Density and porosity in drying starch materials. J. Food Sci. 5, 1367–1372 (1990)Google Scholar
  15. 15.
    Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D.: Moisture diffusivity data compilation in foodstuffs. Drying Technol. 14(10), 2225–2253 (1996)CrossRefGoogle Scholar
  16. 16.
    Lazar, M.E., Farkas, D.F.: The centrifugal fluidized bed. 2. Drying studies on piece-form foods. J. Food Sci. 36(2), 315–319 (1971)CrossRefGoogle Scholar
  17. 17.
    Pang, S., Haslett, A.N.: High–temperature kiln drying of softwood timber: the role of mathematical modeling. In: Turner, I., Mujumdar, A.S. (eds.) Mathematical modeling and numerical technique in drying technology, pp. 179–219. Marcel Dekker Inc., New York (1997)Google Scholar
  18. 18.
    Turner, I., Perré, P.: A synopsis of the strategies and efficient resolution techniques used for modeling and numerically simulation the drying process. In: Turner, I., Mujumdar, A.S. (eds.) Mathematical modeling and numerical technique in drying technology, pp. 1–81. Marcel Dekker Inc., New York (1997)Google Scholar
  19. 19.
    Crank, J.: The mathematics of diffusion. Oxford Science Publications, New York (1992)Google Scholar
  20. 20.
    Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. University Press, New York (1959)Google Scholar
  21. 21.
    Gebhart, B.: Heat conduction and mass diffusion. McGraw-Hill Inc., New York (1993)Google Scholar
  22. 22.
    Luikov, A.V.: Analytical heat diffusion theory. Academic Press Inc., Ltd, London (1968)Google Scholar
  23. 23.
    Incropera, F.P., DeWitt, D.P.: Fundamentals of heat and mass transfer. John Wiley & Sons, New York (2002)Google Scholar
  24. 24.
    Leslie, R.B., Carrillo, P.J., Chung, T.Y., Gilbert, S.G., Hayakawa, K., Marousis, S., Saravacos, G.D., Solberg, M.: Water diffusivity in starch-based systems. In: Levin, H., Slade, L. (eds.) Water relationships in foods, pp. 365–390. Plenum, New York (1991)CrossRefGoogle Scholar
  25. 25.
    Karim, A.M.D., Hawlader, M.N.A.: Drying characteristics of banana: theoretical modeling and experimental validation. J. Food Eng. 70, 35–45 (2005)CrossRefGoogle Scholar
  26. 26.
    Mariani, V.C., Lima, A.G.B., Coelho, L.S.: Apparent thermal diffusivity estimation of the banana during drying using inverse method. J. Food Eng. 85, 569–579 (2008)CrossRefGoogle Scholar
  27. 27.
    Nguyen, M.H., Price, W.E.J.: Air-drying of banana: Influence of experimental parameters, slab thickness, banana maturity and harvesting season. J. Food Eng. 79(1), 200–207 (2007)CrossRefGoogle Scholar
  28. 28.
    Bowrey, R.G., Buckle, K.A., Hamey, I., Pavenayotin, P.: Use of solar energy for banana drying. Food Technol. Aust. 32(6), 290–291 (1980)Google Scholar
  29. 29.
    Robinson, A.A.: Research design and development of banana dehydration process. Food Engineering. UNSW, Sydney, (1980)Google Scholar
  30. 30.
    Garcia, R., Leal, F., Rolz, C.: Drying of bananas using microwave and air ovens. Int. J. Food Sci. Technol. 23(2), 73–80 (1988)Google Scholar
  31. 31.
    Maskan, M.: Microwave/air and microwave finish drying of banana. J. Food Eng. 44, 71–78 (2000)CrossRefGoogle Scholar
  32. 32.
    Farias, R.P.: Drying of banana in oven: thermal and geometric effects. Doctorate thesis. Process engineering, Federal University of Campina Grande. Campina Grande, Brazil (2011)Google Scholar
  33. 33.
    Farias, R.P., Silva, E.G., Lima, W.M.P.B., Silva, W.P., Lima, A.G.B. : Drying of banana: a theoretical and experimental investigation. Deff. Diff. Forum, 2014Google Scholar
  34. 34.
    Haji-Sheikh, A., Sparrow, E.M.: Transient heat conduction in a prolate spheroidal solid. Trans. ASME J. Heat Transf. 88(3), 331–333 (1966)Google Scholar
  35. 35.
    Oliveira, V.A.B., Lima, A.G.B.: Mass diffusion inside prolate spherical solids: An analytical solution. Braz. J. Agro-ind. Prod. 4(1), 41–50 (2002)Google Scholar
  36. 36.
    Azzouz, S., Guizani, A., Belguith, A.: Experimental analysis of heat and mass transfer during grape air drying. In: Proceedings of the 10th International Drying Symposium (IDS ‘96), vol. B, pp. 881–887. Krakow (1996)Google Scholar
  37. 37.
    Pérez, V.H.: Study of the behavior of temperature of banana during the drying process. Master thesis, State University of Campinas, Campinas, Brazil (1998) (In portuguese)Google Scholar
  38. 38.
    Lima, A.G.B.: Diffusion phenomenon in prolate spheroidal solids. Case studies: Drying of banana. Doctorate thesis, State University of Campinas, Campinas, Brazil (1999) (In portuguese)Google Scholar
  39. 39.
    Lima, A.G.B., Queiroz, M.R., Nebra, S.A.: Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chem. Eng. J. 86, 85–93 (2002)CrossRefGoogle Scholar
  40. 40.
    Lima, A.G.B., Queiroz, M.R., Nebra, S.A.: Heat and mass transfer model including shrinkage applied to ellipsoidal products: case study for drying of bananas. Develop. Chem. Eng. Miner. Process. 10, 281–304 (2002)Google Scholar
  41. 41.
    Lima, A.G.B., Farias Neto, S.R., Silva, W.P.: Heat and mass transfer in porous materials with complex geometry: Fundamentals and applications. In: Delgado, J.M.P.Q. (ed.) Heat and mass transfer in porous media. Springer, Berlin (2012)Google Scholar
  42. 42.
    Provenza, F.: Machine designer. Editora F. Provenza, São Paulo, p. 2.47, (1989) (In Portuguese)Google Scholar
  43. 43.
    Pólya, G., Szegö, G.: Inequalities for the capacity of a condenser. Am. J. Math. LXVII, 1–32 (1945)Google Scholar
  44. 44.
    Phoungchandang, S., Woods, J.L.: Moisture diffusion and desorption isotherms for banana. J. Food Sci. 65, 651–657 (2000)CrossRefGoogle Scholar
  45. 45.
    Dandamrongrak, R., Young, G., Mason, R.: Evaluation of pre-treatments for the dehydration of banana and selection of suitable drying models. J. Food Eng. 55, 139–146 (2002)CrossRefGoogle Scholar
  46. 46.
    Queiroz, M.R., Nebra, S.A.: Theoretical and experimental analysis of the drying kinetics of bananas. J. Food Eng. 47, 127–132 (2001)CrossRefGoogle Scholar
  47. 47.
    Demirel, D., Turhan, M.: Air-drying behavior of cavendish and gros Michel banana slices. J. Food Eng. 59, 1–11 (2003)CrossRefGoogle Scholar
  48. 48.
    Kaddumukasa, P., Kyamuhangire, W., Muyonga, J., Muranga, F.I.: The effect of drying methods on the quality of green banana flour. In African Crop Science Conference Proceedings, vol. 7, pp. 1267–1271. Kampala, Uganda (2005)Google Scholar
  49. 49.
    Talla, A., Puiggali, J.-R., Jomaa, W., Jannot, Y.: Shrinkage and density evolution during drying of tropical fruits: application to banana. J. Food Eng. 64, 103–109 (2004)CrossRefGoogle Scholar
  50. 50.
    Queiroz, M.R.: Theoretical and experimental study of the drying kinetics of banana. Doctorate thesis, State University of Campinas, Campinas, Brazil (1994) (In portuguese)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. G. Barbosa de Lima
    • 1
    Email author
  • R. P. de Farias
    • 2
  • W. P. da Silva
    • 3
  • S. R. de Farias Neto
    • 4
  • F. P. M. Farias
    • 5
  • W. M. P. B. de Lima
    • 1
  1. 1.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  2. 2.Department of Agriculture ScienceState University of ParaibaCatolé do RochaBrazil
  3. 3.Department of PhysicsFederal University of Campina GrandeCampina GrandeBrazil
  4. 4.Department of Chemical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  5. 5.Department of Technology and DevelopmentFederal University of Campina GrandeSuméBrazil

Personalised recommendations