Advertisement

Food Dehydration: Fundamentals, Modelling and Applications

  • João M. P. Q. DelgadoEmail author
  • Marta Vázquez da Silva
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 48)

Abstract

Food dehydration is a preservation technique used by the man almost since ever. From the oldest times to nowadays, the dehydration of food is done in order to obtain a product with longer shelf life and minimum losses of physical, chemical and organoleptic characteristics when compared to the fresh material. The objective of this work is to present a brief explanation of the most used techniques, such as convective dehydration, microwave, vacuum and freeze dehydration, and a combinations of these techniques. A critical analyses of the variation of the moisture content of the food with the time of dehydration is presented. Several mathematical models that are classified as theoretical, semi-theoretical and empirical are discussed. An overview of the osmotic dehydration is also given, not as a dehydration technique by itself, but as pre-treatment that will improved the results obtained when the product is subjected to one of the mentioned techniques.

Keywords

Dehydration Food Mathematical models 

Notes

Acknowledgments

J.M.P.Q. Delgado would like to thank Fundação para a Ciência e a Tecnologia (FCT) for financial support through the grant SFRH /BPD /84377 /2012.

References

  1. 1.
    Acevedo, B.A., Chaves, M.G., Avanza, M.V., Dellacassa, E.S.: Freeze-drying concentration of Rangpur lime juice. Int. J. Food Sci. Technol. 49(2), 423–428 (2014)Google Scholar
  2. 2.
    Aguerre, R.J., Suarez, C., Viollaz, P.E.: New BET type multiplayer sorption isotherms. Part II: modelling water sorption in foods. Lebensmittel-Wissenchaft und Technol. 22, 192–195 (1989)Google Scholar
  3. 3.
    Ahrnéa, L.M., Pereirab, N.R., Staacka, N., Floberga, P.: Drying Technol. 25(7–8), 1149–1153 (2007)Google Scholar
  4. 4.
    Akgun, N.A., Doymaz, I.: Modelling of olive cake thin-layer drying process. J. Food Eng. 68, 445–461 (2005)Google Scholar
  5. 5.
    Akpinar, E.K.: Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 73(1), 75–84 (2006)Google Scholar
  6. 6.
    Al-Harahsheh, M., Al-Muhtaseb, A.H., Magee, T.R.A.: Microwave drying kinetics of tomato pomace: effect of osmotic dehydration. Chem. Eng. Process. 48(1), 524–531 (2009)Google Scholar
  7. 7.
    Alibas, I.: Microwave, air and combined microwave-air-drying parameters of pumpkin slices. LWT Food Sci. Technol. 40(8), 1445–1451 (2007)Google Scholar
  8. 8.
    Altan, A., Maskan, M.: Microwave assisted drying of short-cut (ditalini) macaroni:drying characteristics and effect of drying processes on starch properties. Food Res. Int. 38, 787–796 (2005)Google Scholar
  9. 9.
    Auleda, J.M., Raventós, M., Sánchez, J., Hernández, E.: Estimation of the freezing point of concentrated fruit juices for application in freeze concentration. J. Food Eng. 105(2), 289–294 (2011)Google Scholar
  10. 10.
    Ayensu, A.: Dehydration of food crops using a solar dryer with convective heat flow. Sol. Energy 59, 121–126 (1997)Google Scholar
  11. 11.
    Azzouz, S., Guizani, A., Joma, W., Belghith, A.: Moisture diffusivity and drying kinetic equation of convective drying of grapes. J. Food Eng. 55(4), 323–330 (2002)Google Scholar
  12. 12.
    Babalis, S.J., Papanicolaou, E., Kyriakis, N., Belessiotis, V.G.: Evaluation of thin-layer drying models for describing drying kinetics of figs (Ficus carica). J. Food Eng. 75, 205–214 (2006)Google Scholar
  13. 13.
    Bilbao-Sáinz, A., Andrés, C., Chiralt, A., Fito, P.: Microwaves phenomena duringdrying of apple cylinders. J. Food Eng. 74(1), 160–167 (2006)Google Scholar
  14. 14.
    Boeh-Ocansey, O.: Some factors influencing the freeze drying of carrot discs in vacuo and at atmospheric pressure. J. Food Eng. 4(3), 229–243 (1985)Google Scholar
  15. 15.
    Bouraoui, M., Richard, P., Durance, T.: Microwave and convective drying of potato slices. J. Food Process Eng. 17, 353–363 (1994)Google Scholar
  16. 16.
    Brennan, J.G.: Food Dehydration: A Dictionary and Guide. Butterworth-Heinemann Ltd, Oxford (1994). ISBN 978-0750611305Google Scholar
  17. 17.
    Brooker, D.B., Bakker-Arkema, F.W., Hall, C.W.: Drying and Storage of Grains and Oilseeds. The AVI Publishing Company, Westport (1992)Google Scholar
  18. 18.
    Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938)Google Scholar
  19. 19.
    Carbonell, J.V., Pinaga, F., Yusa, V., Pena, J.L.: Dehydration of paprika and kinetics of color degradation. J. Food Eng. 5(3), 179–193 (1986)Google Scholar
  20. 20.
    Caurie, M.: A new model equation for predicting safe storage moisture levels for optimum stability of dehydrated foods. J. Food Technol. 5, 301–307 (1970)Google Scholar
  21. 21.
    Ceylan, I., Aktas, M., Dog˘an, H.: Mathematical modeling of drying characteristics of tropical fruits. Appl. Therm. Eng. 27, 1931–1936 (2007)Google Scholar
  22. 22.
    Chinnan, M.S.: Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Trans. ASAE 27(2), 610–615 (1984)Google Scholar
  23. 23.
    Chiralt, A., Martínez-Navarrete, N., Martínez-Monzó, J., Talens, P., Moraga, G., Ayala, A., Fito, P.: Changes in mechanical properties throughout osmotic processes: cryoprotectant effect. J. Food Eng. 49(2–3), 129–135 (2001)Google Scholar
  24. 24.
    Corzo, O., Bracho, N., Pereira, A., Vásquez, A.: Weibull distribution for modeling air drying of coroba slices. LWT Food Sci. Technol. 41(10), 2023–2028 (2008)Google Scholar
  25. 25.
    Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, London (1975)Google Scholar
  26. 26.
    Cui, Z.-W., Xu, S.-Y., Sun, D.-W.: Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Dry. Technol. 22(3), 563–575 (2004)Google Scholar
  27. 27.
    Cui, Z.-W., Xu, S.-Y., Sun, D.-W.: Dehydration of garlic slices by combined microwave-vacuum and air drying. Dry. Technol. 21(7), 1173–1184 (2003)Google Scholar
  28. 28.
    Cui, Z.-W., Xu, S.-Y., Sun, D.-W., Chen, W.: Temperature changes during microwave-vacuum drying of sliced carrots. Dry. Technol 23(5), 1057–1074 (2005)Google Scholar
  29. 29.
    Dadali, G., Apar, D.K., Ozbek, B.: Microwave drying kinetics of okra. Dry. Technol 25(5), 917–924 (2007)Google Scholar
  30. 30.
    Dadali, G., Apar, D.K., Ozbek, B.: Estimation of effective moisture diffusivity of okra for microwave drying. Dry. Technol 25(9), 1445–1450 (2007)Google Scholar
  31. 31.
    Dadali, G., Demirhan, E., Ozbek, B.: Microwave heat treatment of spinach: drying kinetics and effective moisture diffusivity. Dry. Technol 25(10), 1703–1712 (2007)Google Scholar
  32. 32.
    Dalgleish, J.McN: Freeze-Drying. In the Food Industry. Elsevier, London (1990)Google Scholar
  33. 33.
    Dandamrongrak, R., Young, G., Mason, R.: Evaluation of various pre-treatment for dehydration of banana and selection of suitable drying models. J. Food Eng. 55, 139–146 (2002)Google Scholar
  34. 34.
    Demirhan, E., Özbek, B.: Microwave drying characteristics of basil. J. Food Process. Preserv. 34(3), 476–494 (2010)Google Scholar
  35. 35.
    Demirhan, E., Özbek, B.: Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chem. Eng. Comm. 198, 957–975 (2011)Google Scholar
  36. 36.
    Dermesonlouoglou, E.K., Giannakourou, M.C., Taoukis, P.: Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. J. Food Eng. 78(1), 272–280 (2007)Google Scholar
  37. 37.
    Deshpande, S.S., Cheryan, M., Sathe, S.K., Salunkhe, D.K.: Freeze concentration of fruit juices. Crit. Rev. Food Sci. Nutr. 20(3), 173–248 (1984)Google Scholar
  38. 38.
    Doymaz, I.: Convective air drying characteristics of thin layer carrots. J. Food Eng. 61, 359–364 (2004)Google Scholar
  39. 39.
    Drouzas, A.E., Tsami, E., Saravacos, G.D.: Microwave/vacuum drying of model fruit gels. J. Food Eng. 39(2), 117–122 (1999)Google Scholar
  40. 40.
    Drouzas, A.E., Schubert, H.: Microwave application in vacuum drying of fruits. J. Food Eng. 28(2), 203–209 (1996)Google Scholar
  41. 41.
    Fahloul, D., Lahbari, M., Benmoussa, H., Mezdour, S.: Effect of osmotic dehydration on the freeze drying kinetics of apricots. J. Food Agric. Environ. 7(2), 117–121 (2009)Google Scholar
  42. 42.
    Falade, K.O., Oyedele, O.O.: Effect of osmotic pretreatment on air drying characteristics and colour of pepper (Capsicum spp) cultivars. J. Food Sci. Technol. 47(5), 488–495 (2010)Google Scholar
  43. 43.
    Flink, J.: Energy analysis in dehydration processes. Food Technol. 31, 77–78 (1977)Google Scholar
  44. 44.
    Garcia, R., Leal, F., Rolz, C.: Drying of bananas using microwave and air ovens. Int. J. Food Sci. Technol. 23, 73–80 (1988)Google Scholar
  45. 45.
    Gerelt, B., Ikeuchi, Y., Suzuki, A.: Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Sci. 56(3), 311–318 (2000)Google Scholar
  46. 46.
    Goyal, R.K., Kingsly, A.R.P., Manikantan, M.R., Ilyas, S.M.: Mathematical modeling of thin layer drying kinetics of plum in a tunnel dryer. J. Food Eng. 79, 176–180 (2007)Google Scholar
  47. 47.
    Gunasekaran, S.: Grain drying using continuous and pulsed microwave energy. Dry. Technol. 8(5), 1039–1047 (1990)Google Scholar
  48. 48.
    Halsey, G.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)Google Scholar
  49. 49.
    Hammami, C., René, F.: Determination of freeze-drying process variables for strawberries. J. Food Eng. 32(2), 133–154 (1997)Google Scholar
  50. 50.
    Hammami, C., René, F., Marin, M.: Process-quality optimization of the vacuum freeze-drying of apple slices by the response surface method. Int. J. Food Sci. Technol. 23(2), 145–160 (1999)Google Scholar
  51. 51.
    Hansen, R.C., Keener, H.M., ElSohly, H.N.: Thin-layer drying of cultivated taxus clippings. Trans. ASAE 36(6), 1873–1877 (1993)Google Scholar
  52. 52.
    Henderson, S.M.: A basic concept of equilibrium moisture. Agric. Eng. 33, 29–32 (1952)Google Scholar
  53. 53.
    Henderson, S.M., Pabis, S.: Grain drying theory I. Temperature effect on drying coefficient. J. Agric. Eng. Res. 6(3), 169–174 (1969)Google Scholar
  54. 54.
    Islam, M.N., Flink, J.M.: Dehydration of potato II. Osmotic concentration and its effect on air drying behavior. J. Food Technol. 17, 387–403 (1982)Google Scholar
  55. 55.
    Jackson, T.H., Mohamed, B.B.: The shambat process: new development arising from the osmotic dehydration of fruits and vegetables. Sudan J. Food Sci. Technol. 3, 18–22 (1971)Google Scholar
  56. 56.
    Jeni, K., Yapa, M., Rattanadecho, P.: Design and analysis of the commercialized drier processing using a combined unsymmetrical double-feed microwave and vacuum system (case study: tea leaves). Chem. Eng. Process. 49(4), 389–395 (2010)Google Scholar
  57. 57.
    Karathanos, V.T., Belessiotis, V.G.: Application of a thin layer equation to drying data of fresh and semi-dried fruits. J. Agric. Eng. Res. 74, 355–361 (1999)Google Scholar
  58. 58.
    Karathanos, V.T.: Determination of water content of dried fruits by drying kinetics. J. Food Eng. 39, 337–344 (1999)Google Scholar
  59. 59.
    Karathanos, V.T., Kostaropoulos, A.E., Saravacos, G.D.: Air-drying kinetics of osmotically dehydrated fruits. Dry. Technol. 13(5–7), 1503–1521 (1995)Google Scholar
  60. 60.
    Karel, M.: Heat and mass transfer in freeze drying. In: Goldblith, S.A., Rey, L., Rothmayr, W.W. (eds.) Freeze Drying and Advanced Food Technology. Academic Press, London (1975). ISBN 0-12-288450-7Google Scholar
  61. 61.
    Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G.: Thin-layer drying characteristics and modeling of pistachio nuts. J. Food Eng. 78, 98–108 (2007)Google Scholar
  62. 62.
    Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G.: Thin-layer drying characteristics and modeling of pistachio nuts. J. Food Eng. 78, 98–108 (2007)Google Scholar
  63. 63.
    Kaya, A., Aydın, O., Demirtas, C.: Drying Kinetics of Red Delicious Apple. Biosyst. Eng. 96(4), 517–524 (2007)Google Scholar
  64. 64.
    Khraisheha, M.A.M., McMinnb, W.A.M., Mageeb, T.R.A.: Quality and structural changes in starchy foods during microwave and convective drying. Food Res. Int. 37(5), 497–503 (2004)Google Scholar
  65. 65.
    Kiranoudis, C.T., Tsami, E., Maroulis, Z.B.: Microwave vacuum drying kinetics of some fruits. Drying Technology 15(10), 2421–2440 (1997)Google Scholar
  66. 66.
    Krokida, M.K., Maroulis, Z.B., Saravacos, G.D.: The effect of the method of drying on the color of dehydrated products. Int. J. Food Sci. Technol. 36(1), 53–59 (2001)Google Scholar
  67. 67.
    Krokidaa, M.K., Maroulisa, Z.B.: Effect of microwave drying on some quality properties of dehydrated products. Dry. Technol. 17(3), 449–466 (1999)Google Scholar
  68. 68.
    Krulis, M., Kühnert, S., Leiker, M., Rohm, H.: Influence of energy input and initial moisture on physical properties of microwave-vacuum dried strawberries. Eur. Food Res. Technol. 221(6), 803–808 (2005)Google Scholar
  69. 69.
    Lahsasni, S., Kouhila, M., Mahrouz, M., Jaouhari, J.T.: Drying kinetics of prickly pear fruit (Opuntia ficus indica). J. Food Eng. 61, 173–179 (2004)Google Scholar
  70. 70.
    Lewicki, P.P., Lenart, A.: Handbook of Industrial Drying, vol. 1, 2nd edn, p. 691. Marcel Dekker Inc, New York (1995)Google Scholar
  71. 71.
    Lewis, W.K.: The rate of drying of solid materials. Ind. Eng. Chem. 13, 427–432 (1921)Google Scholar
  72. 72.
    Lima, O.C.M., Machado, G.D., Lucheis, R.M., Pereira, N.C.: Moisture equilibrium isotherms for a handmake kraft paper. In: Proceedings of the International Drying Symposium, São Paulo. CD-Rom (2004)Google Scholar
  73. 73.
    Lin, T.M., Durance, T.D., Scaman, C.H.: Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res. Int. 31(2), 111–117 (1998)Google Scholar
  74. 74.
    Marques, L.G., Ferreira, M.C., Freire, J.T.: Freeze-drying of acerola (Malpighia glabra L.). Chem. Eng. Process. 46(5), 451–457 (2007)Google Scholar
  75. 75.
    Marques, L.G., Freire, J.T.: Analysis of freeze-drying of tropical fruits. Dry. Technol. 23(9–11), 2169–2184 (2005)Google Scholar
  76. 76.
    Maskan, M.: Microwave/air and microwave finish drying of banana. J. Food Eng. 44(2), 71–78 (2000)Google Scholar
  77. 77.
    Maskan, M.: Kinetics of colour change of kiwifruits during hot air and microwave drying. J. Food Eng. 48(2), 169–175 (2001)Google Scholar
  78. 78.
    Maskan, M.: Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J. Food Eng. 48(2), 177–182 (2001)Google Scholar
  79. 79.
    McMinn, W.A.M.: Prediction of moisture transfer parameters for microwave drying of lactose powder using Bi–G drying correlation. Food Res. Int. 37, 1041–1047 (2004)Google Scholar
  80. 80.
    McMinn, W.A.M.: Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J. Food Eng. 72(2), 113–123 (2006)Google Scholar
  81. 81.
    Mellor, J.D.: Fundamentals of Freeze-Drying. Academic Press, London (1978)Google Scholar
  82. 82.
    Mujumdar, A.S. (ed.): Handbook of Industrial Drying, 2nd edn. New York, Marcel Dekker (1995). ISBN 0-8247-9644-6Google Scholar
  83. 83.
    Nawirska, A., Figiel, A., Kucharska, A.Z., Sokół-Łetowska, A., Biesiada, A.: Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. J. Food Eng. 54(1), 14–20 (2009)Google Scholar
  84. 84.
    Nimmanpipug, N., Therdthai, N., Dhamvithee, P.: Characterisation of osmotically dehydrated papaya with further hot air drying and microwave vacuum drying. Int. J. Food Sci. Technol. 48(6), 1193–1200 (2013)Google Scholar
  85. 85.
    Oswin, C.R.: The kinetics of package life III. The Isotherm J. Chem. Ind. 65, 419–421Google Scholar
  86. 86.
    Overhults, D.G., White, H.E., Hamilton, H.E., Ross, I.J.: Drying soybean with heated air. Trans. ASAE 16, 112–113 (1973)Google Scholar
  87. 87.
    Özbek, B., Dadali, G.: Thin-layer drying characteristics and modeling of mint leaves undergoing microwave treatment. J. Food Eng. 83(4), 541–549 (2007)Google Scholar
  88. 88.
    Ozdemir, M., Devres, Y.O.: The thin layer drying characteristics of hazelnuts during roasting. J. Food Eng. 42, 225–233 (1999)Google Scholar
  89. 89.
    Page, G.E.: Factors influencing the maximum rates of air drying shelled corn in thin layers. M. Sc. thesis, Purdue University (1949)Google Scholar
  90. 90.
    Pan, Y.K.A., Zhao, L.J.A., Zhang, Y.A., Chen, G.B., Mujumdar, A.S.: Osmotic dehydration pretreatment in drying of fruits and vegetables. Dry. Technol. 21(6), 1101–1114 (2003)Google Scholar
  91. 91.
    Panchariya, P.C., Popovic, P.C., Sharma, A.L.: Thin-layer modelling of black tea drying process. J. Food Eng. 52(4), 349–357 (2002)Google Scholar
  92. 92.
    Park, K.J., Vohnikova, Z., Brod, F.P.R.: Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J. Food Eng. 51, 193–199 (2002)Google Scholar
  93. 93.
    Paulsen, M.R., Thompson, T.L.: Drying endysus of grain sorghum. Trans. ASAE 16, 537–540 (1973)Google Scholar
  94. 94.
    Peleg, M.: Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Process Eng. 16, 21–37 (1993)Google Scholar
  95. 95.
    Pokharkar, S.M., Prasad, S.: Air drying behaviour of osmotically dehydrated pineapple. J. Food Sci. Technol. 39(4), 384–387 (2002)Google Scholar
  96. 96.
    Ponting, J.D., Watters, G.G., Forrey, R.R., Jackson, R., Stanley, W.L.: Osmotic dehydration of fruits. Food Technol. 20, 125–128 (1966)Google Scholar
  97. 97.
    Rahman, M.S., Perera, C.O., Theband, C.: Desorption isotherm and heat pump drying kinetics of peas. Food Res. Int. 30, 485–491 (1998)Google Scholar
  98. 98.
    Rahman, S., Lamb, J.: Air drying behavior of fresh and osmotically dehydrated pineapple. J. Food Process Eng. 14(3), 163–171 (1991)Google Scholar
  99. 99.
    Raoult-Wack, A.L.: Recent advances in the osmotic dehydration of foods. Trends Food Sci. Technol. 5(8), 255–260 (1994)Google Scholar
  100. 100.
    Reppa, A., Mandala, J., Kostaropoulos, A.E., Saravacos, G.D.: Influence of solute temperature and concentration on the combined osmotic and air drying. Dry. Technol. 17(7–8), 1449–1458 (1999)Google Scholar
  101. 101.
    Reyes, M.G., Corzo, O., Bracho, N.: Optimization of the osmotic dehydration of sardines by response surface methodology. Revista Cientifica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia 15(4), 377–384 (2005)Google Scholar
  102. 102.
    Rodríguez, R., Lombraña, J.I., Kamel, M., Elvira, C.: Kinetic and quality study of mushroom drying under microwave and vacuum. Dry. Technol. 23(9–11), 2197–2213 (2005)Google Scholar
  103. 103.
    Ruiz-López, I.I., Huerta-Mora, I.R., Vivar-Vera, M.A., Martínez-Sánchez, C.E., Herman-Lara, E.: Effect of osmotic dehydration on air-drying haracteristics of chayote. Dry. Technol. 28(10), 1201–1212 (2010)Google Scholar
  104. 104.
    Saeed, I.E., Sopian, K., Zainol Abidin, Z.: Drying kinetics of Roselle (Hibiscus sabdariffa L.): dried in constant temperature and humidity chamber. In: Muchtar (ed.) Proceedings of SPS 2006, pp. 143–148. Permata, Bangi, S.D.E., Malaysia, 29–30 Aug 2006Google Scholar
  105. 105.
    Sagara, Y., Kaminishi, K., Goto, E., Watanabe, T., Imayoshi, Y., Iwabuchi, H.: Characteristic evaluation for volatile components of soluble coffee depending on freeze-drying conditions. Dry. Technol. 22(9–11), 2185–2196 (2005)Google Scholar
  106. 106.
    Sagara, Y., Ichiba, J-i: Measurement of transport properties for the dried layer of coffee solution undergoing freeze drying. Dry. Technol. 12(5), 1081–1103 (1994)Google Scholar
  107. 107.
    Sankat, C.K., Castaigne, F., Maharaj, R.: The air drying behaviour of fresh and osmotically dehydrated banana slices. Int. J. Food Sci. Technol. 31(2), 123–135 (1996)Google Scholar
  108. 108.
    Sham, P.W.Y., Scaman, C.H., Durance, T.D.: Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. J. Food Sci. 66(9), 1341–1347 (2001)Google Scholar
  109. 109.
    Sharaf-Eldeen, Y.I., Hamdy, M.Y.: Falling rate drying of fully exposed biological materials: a review of mathematical models. ASAE Paper No. 79-6622. 1979 Winter Meeting of ASAE (1979)Google Scholar
  110. 110.
    Sharaf-Elden, Y.I., Blaisdell, J.L., Hamdy, M.Y.: A model for ear corn drying. Trans. ASAE 23(5), 1261–1265, 1271 (1980)Google Scholar
  111. 111.
    Sharaf-elden, Y.I., Blaisdell, J.L., Hamdy, M.Y.: A model for ear corn drying. Trans. ASAE 5(4), 1261–1265 (1980)Google Scholar
  112. 112.
    Sharma, G.P., Prasad, S.: Optimization of process parameters for microwave drying of garlic cloves. J. Food Eng. 75(4), 441–446 (2005)Google Scholar
  113. 113.
    Sharma, G.P., Prasad, S.: Comparison of convective and microwave—convective drying of garlic: kinetics and energy consumption. J. Food Sci. Technol. 39(6), 603–608 (2002)Google Scholar
  114. 114.
    Sherwood, T.K.: The drying of solids. Ind. Eng. Chem. 21(1), 12–16 (1929)Google Scholar
  115. 115.
    Shi, X.Q., Fito, P.: Vacuum osmotic dehydration of fruits. Dry. Technol. 11(6), 1429–1442 (1993)Google Scholar
  116. 116.
    Smith, S.E.: The sorption of water vapour by high polymers. J. Am. Chem. Soc. 69, 646 (1947)Google Scholar
  117. 117.
    Sogi, D.S., Shivhare, U.S., Garg, S.K., Bawa, S.A.: Water sorption isotherms and drying characteristics of tomato seeds. Biosyst. Eng. 84(3), 297–301 (2003)Google Scholar
  118. 118.
    Someswararao, C., Srivastav, P.P.: A novel technology for production of instant tea powder from the existing black tea manufacturing process. Innovative Food Sci. Emerg. Technol. 16, 143–147 (2012)Google Scholar
  119. 119.
    Soysal, Y.: Microwave drying characteristics of parsley. Biosyst. Eng. 89(2), 167–173 (2004)Google Scholar
  120. 120.
    Spiess, W.E.L., Beshnilian, D.: Osmotic treatments in food processing. Current state and texture needs. In: Akritidis, C.B., Marinos-Kouris, D., Saravacos, G.D. (eds.) Proceedings of the 11th International Drying Symposium (IDS’98), vol A, pp. 47–56. Ziti Editions, Thessloniki (1998)Google Scholar
  121. 121.
    Stanisławski, J.: Drying of diced carrot in a combined microwave–fluidized bed dryer. Dry. Technol. 23(8), 1711–1721 (2005)Google Scholar
  122. 122.
    Sumnu, G., Turabi, E., Oztop, M.: Drying of carrots in microwave and halogen lamp-microwave combination ovens. Lebensm.-Wiss. Technol. 38(5), 549–553 (2005)Google Scholar
  123. 123.
    Sunjka, P.S., Rennie, T.J., Beaudry, C., Raghavan, G.S.V.: Microwave-convective and microwave-vacuum drying of cranberries: A comparative study. Dry. Technol. 22(5), 1217–1231 (2004)Google Scholar
  124. 124.
    Swain, S., Samuel, D.V.K., Bal, L.M., Kar, A., Sahoo, G.P.: Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Sci. Biotechnol. 21(4), 969–978 (2012)Google Scholar
  125. 125.
    Therdthai, N., Zhou, W., Pattanapa, K.: Microwave vacuum drying of osmotically dehydrated mandarin cv. (Sai-Namphaung). Int. J. Food Sci. Technol. 46(11), 2401–2407 (2011)Google Scholar
  126. 126.
    Thompson, T.L., Peart, R.M., Foster, G.H.: Mathematical Simulation of Corn Drying - A New Model. Transactions of the ASABE. 11(4)‚ 582−586 (1968)Google Scholar
  127. 127.
    Togrul, I.T., Pehlivan, D.: Modeling of thin layer drying kinetics of some fruits under open air sun drying process. J. Food Eng. 65(3), 413–425 (2004)Google Scholar
  128. 128.
    Togrul, I.T., Pehlivan, D.: Mathematical modeling of solar drying of apricots in thin layers. J. Food Eng. 55(3), 209–216 (2002)Google Scholar
  129. 129.
    Torringa, E., Esveld, E., Scheewe, I., Van Den Berg, R., Bartels, P.: Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms. J. Food Eng. 49(2–3), 185–191 (2001)Google Scholar
  130. 130.
  131. 131.
    Tutuncu, M.A., Labuza, T.P.: Effect of geometry on the effective moisture transfer diffusion coefficient. J. Food Eng. 30, 433–447 (1996)Google Scholar
  132. 132.
    Upadhyay, A., Sharma, H.K., Sarkar, B.C.: Characterization and dehydration kinetics of carrot pomace. Agricultural Engineering International: The CIGR Ejournal. Manuscript FP 07 35. 10(35) (2008)Google Scholar
  133. 133.
    Van den Berg, C., Bruin, S.: Water activity and its estimation in food systems. In Rockland, L.B., Stewart, G.F. (eds.), Water Activity: Influences on Food Quality, pp. 147–177. Academic Press, New York (1981)Google Scholar
  134. 134.
    Vázquez, G., Chenlo, F., Moreira, R., Castoyas, A.: The dehydration of garlic. I. Desorption isotherms and modeling of drying kinetics. Dry. Technol. 17(6), 1095–1108 (1999)Google Scholar
  135. 135.
    Wadsworth, J.I., Velupillai, L., Verma, L.R.: Microwave-vacuum drying of parboiled rice. Tran. Am. Soc. Agric. Eng. 33(1), 199–221 (1990)Google Scholar
  136. 136.
    Walde, S.G., Balaswamy, K., Velu, V., Rao, D.G.: Microwave drying and grinding characteristics of wheat (Tricitium aestivum). J. Food Eng. 55(3), 271–276 (2002)Google Scholar
  137. 137.
    Wang, C.Y., Singh, R.P.: A Single Layer Drying Equation for RoughRice. ASAE Press, St. Joseph (1978)Google Scholar
  138. 138.
    Wang, J., Xi, Y.S.: Drying characteristics and drying quality of carrot using a two-stage microwave process. J. Food Eng. 68(4), 505–511 (2005)MathSciNetGoogle Scholar
  139. 139.
    Wang, W., Chen, G.: Theoretical study on microwave freeze-drying of an aqueous pharmaceutical excipient with the aid of dielectric material. Dry. Technol. 23(9–11), 2147–2168 (2005)Google Scholar
  140. 140.
    Wang, W., Thorat, B.H., Chen, G., Mujumdar, A.S.: Simulation of fluidized-bed drying of carrot with microwave heating. Dry. Technol. 20(9), 1855–1867 (2002)Google Scholar
  141. 141.
    Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X.: Mathematical modeling on thin layer microwave drying of apple pomace with and without hot-air pre drying. J. Food Eng. 80(2), 536–544 (2007)Google Scholar
  142. 142.
    Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J., Hu, X.: Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40, 39–46 (2007)Google Scholar
  143. 143.
    White, G.M., Ross, I.J., Poneleit, C.G.: Fully exposed drying of popcorn. Trans. ASAE 24(2), 466–468 (1981)Google Scholar
  144. 144.
    Xu, Y., Min, Z., Mujumdar, A.S., Zhou, L.-Q., Sun, J.-C.: Studies on hot air and microwave vacuum drying of wild cabbage. Dry. Technol. 22(9), 2201–2209 (2004)Google Scholar
  145. 145.
    Yadav, A.K., Singh, S.V.: Osmotic dehydration of fruits and vegetables: a review. J. Food Sci. Technol. (2012) doi: 10.1007/s13197-012-0659-2, published online 22 February 2012
  146. 146.
    Yaldiz, O., Ertekyn, C.: Thin layer solar drying of some vegetables. Dry. Technol. 19(3–4), 583–597 (2001)Google Scholar
  147. 147.
    Yaldiz, O., Ertekin, C., Uzun, H.I.: Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26, 457–465 (2001)Google Scholar
  148. 148.
    Yongsawatdigul, J., Gunasekaran, S.: Microwave-vacuum drying of cranberries: Part I. Energy use and efficiency. J. Food Process. Preserv. 20(2), 121–143 (1996)Google Scholar
  149. 149.
    Yongsawatdigul, J., Gunasekaran, S.: Microwave-vacuum drying of cranberries: Part II. Quality evaluation. J. Food Process. Preserv. 20(2), 145–156 (1996)Google Scholar
  150. 150.
    Zhang, S., Zheng, B.: Effect of drying methods on quality of abalone. J. Food Agric. Environ. 11(3–4), 444–447 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • João M. P. Q. Delgado
    • 1
    Email author
  • Marta Vázquez da Silva
    • 2
    • 3
  1. 1.Laboratory of Building Physics (LFC), Civil Engineering Department, Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.Instituto Universitário da Maia (ISMAI)Avioso S. Pedro, Castêlo da MaiaPortugal
  3. 3.Faculdade de Engenharia, Centro de Estudos de Fenómenos de Transporte (CEFT)Universidade do PortoPortoPortugal

Personalised recommendations