Advertisement

Grain Drying Simulation: Principles, Modeling and Applications

  • A. G. Barbosa de LimaEmail author
  • R. P. de Farias
  • S. R. Farias Neto
  • E. M. A. Pereira
  • J. V. da Silva
Chapter
  • 1.2k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 48)

Abstract

This chapter focuses in drying of wet solids in cross flow dryer (continuous drying system) with particular reference to grains. Here, topics related to grain, drying fundamental, types and selection of dryer, and drying models are presented in details. A cross flow dryer mathematical modeling that considers the influence of the porosity of the bed and transient terms in the drying process is presented and discussed. The governing conservation equations have been solved numerically using the finite-volume method and upwind formulation to convective terms. Application has been done to drying of yellow corn kernel. To analyze the influence of the main drying parameters on the quality of the product at the end of the process, results of the humidity ratio and temperature of the air and temperature and moisture content of the solid along of the drying process are presented, analyzed and compared with experimental data.

Keywords

Drying Finite-volume Dryer Cross-flow Corn grain 

Notes

Acknowledgments

The authors would like to express their thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), and FINEP (Financiadora de Estudos e Projetos, Brazil) for supporting this work; to the authors of the references in this chapter that helped in our understanding of this complex subject, and to the Editors by the opportunity given to present our research in this book.

References

  1. 1.
    Brokker, D.B., Bakker-Arkena, F.W., Hall, C.W.: Drying and Storage of Grains and Oil Seeds. AV1 Book, New York (1992)Google Scholar
  2. 2.
    Rumsey, T.R., Rovedo, C.O.: Two-dimensional simulation model for dynamic cross-flow rice drying. Chem. Eng. Process. 40, 355–362 (2001)CrossRefGoogle Scholar
  3. 3.
    Pang, S., Haslett, A.N.: High-temperature kiln drying of softwood timber: the role of mathematical modeling. In: Turner, I., Mujumdar, A.S. (eds.) Mathematical Modeling and Numerical Techniques in Drying Technology. Marcel Dekker Inc, New York (1997)Google Scholar
  4. 4.
    Houška, K., Valchář, J., Viktorin, Z.: Computer-aided design of dryers. In: Mujumdar, A.S. (ed.) Advances in Drying, vol. 4. Hemisphere Publishing Corporation, New York (1987)Google Scholar
  5. 5.
    Sokhansanj, S.: Grain drying simulation with respect to energy conservation and grain quality. In: Mujumdar, A.S. (ed.) Advances in Drying, vol. 3. Hemisphere Publishing Corporation, New York (1984)Google Scholar
  6. 6.
    Imre, L.: Solar drying. In: Mujumdar, A.S. (ed.) Handbook of Industrial Drying, vol. 1. Marcel Dekker, Inc., New York (1995)Google Scholar
  7. 7.
    Turner, I., Perré, P.: A synopsis of the strategies and efficient resolution techniques used for modelling and numerically simulating the drying process. In: Turner, I., Mujumdar, A.S. (eds.) Mathematical Modeling and Numerical Techniques in Drying Technology. Marcel Dekker, Inc., New York (1997)Google Scholar
  8. 8.
    Bakker-Arkema, F.W., Lerew, L.E., De Boer, S.F., Roth, M.C.: Grain drying simulation, Reseacher Report 224 (1974)Google Scholar
  9. 9.
    Sokhansanj, S., Wood, H.C.: Simulation of thermal and disinfestations characteristics of forage dryer. Drying Technol. 9(3), 643–656 (1991)CrossRefGoogle Scholar
  10. 10.
    Fasina, O., Sokhansang, S.: Modeling the bulk cooling of alfalfa pellets. Drying Technol. 13(889), 1881–1904 (1993)Google Scholar
  11. 11.
    Barrozo, M.A.S., Sartori, D.J.M., Freire, J.T.: Simultaneous heat and mass transfer during the drying of the soybeans seeds in a crossflow moving bed. In: Proceeding of the International Drying Symposium (IDS), Krakow, Poland, vol. B, pp. 873–880, (1996)Google Scholar
  12. 12.
    Motta-Lima, O.C., Pinto, J.C., Massarani, G.: Parameter estimation in cross-flow sliding bed drying. In: Proceedings of the International Drying Symposium, Krakow, Poland, vol. A, pp. 283–290, (1996)Google Scholar
  13. 13.
    Li, Y., Cao, C., Liu, D.: Simulation of recirculating circular grain dryer with tempering stage. Drying Technol. 15(1), 201–214 (1997)CrossRefGoogle Scholar
  14. 14.
    Liu, Q., Bakker-Arkema, F.W.: Automatic control of cross-flow dryers, part 2: design of a model-predictive controller. J. Agric. Eng. Res. 80(2), 173–181 (2001)CrossRefGoogle Scholar
  15. 15.
    Liu, Q., Bakker-Arkema, F.W.: Automatic control of cross-flow dryers, part 1: development of process model. J. Agric. Eng. Res. 80(1), 81–86 (2001)CrossRefGoogle Scholar
  16. 16.
    Eltigani, A.Y., Bakker-Arkena, F.W.: Automatic control of commercial cross-flow grain dryers. Drying Technol. 5(4), 561–575 (1987)CrossRefGoogle Scholar
  17. 17.
    Vasconcelos, L.G.S., Alsina, O.L.S.: Drying simulation of (carioca( beans in cross-flow. In: Proceedings of the International Drying Symposium (IDS), Montreal, Canada, vol. B, pp. 1500–1507, (1992)Google Scholar
  18. 18.
    França, A.S., Fortes, M., Haghighi, K.: Numerical simulation of intermittent and continuous deep-bed drying of biological material. Drying Technol. 12(7), 1537–1560 (1994)CrossRefGoogle Scholar
  19. 19.
    Soponronnarit, S., Prachaayawarakorn, S., Sripawatakul, O.: Developments of cross-flow fluidized bed paddy dryer. Drying Technol. 14(10), 2397–2410 (1996)CrossRefGoogle Scholar
  20. 20.
    Giner, S.A., Mascheroni, R.H., Wellist, M.E.: Cross-flow drying of wheat: a simulation program with a diffusion-based deep-bed model and a kinetic equation for viability loss estimation. Drying Technol. 14(10), 2255–2292 (1996)CrossRefGoogle Scholar
  21. 21.
    Giner, S.A., Bruce, D.M., Mortimore, S.: Two-dimensional model of steady-state mixed-flow grain drying: part 1: the model. J. Agric. Eng. Res. 71, 37–50 (1998)CrossRefGoogle Scholar
  22. 22.
    Giner, S.A., Bruce, D.M.: Two-dimensional model of steady-state mixed-flow grain drying: part 2: experimental validation. J. Agric. Eng. Res. 71, 51–56 (1998)CrossRefGoogle Scholar
  23. 23.
    Santori, D.J.M.: Drying of reeds in cross-flow moving bed: mechanical effect and air humidity. In: Proceedings of the International Drying Symposium (IDS), Montreal, Canada, vol. B, pp. 1524–1533, (1992)Google Scholar
  24. 24.
    Pimentel, R.O., Sartori, D.J.M.: Drying of grass seeds in cross flow band dryer. In Proceedings of the International Drying Symposium, Halkidiki, Greece, vol. B, pp. 1350–1357 (1998)Google Scholar
  25. 25.
    Yang, W., Siebenmorgen, T.J., Jia, C.C., Howwell, T.A., Cnossen, A.G.: Cross-Flow drying of rough rice as mapped on its glass transition state diagram. In: Proceedings of the International Drying Symposium (IDS), Noordwijkerhout, The Netherlands, CD ROM (2000)Google Scholar
  26. 26.
    Siebenmorgen, W.Y., Jia, C.C., Howell, T.A., Cuossen, A.G.: Cross-flow drying of rough rice as mapped and its glass transition state diagram. In: Proceedings of the International Drying Symposium (IDS), Noordwijkerhout, The Netherlands, CD ROM (2000)Google Scholar
  27. 27.
    Farias, R.P.: Biological products drying simulation in crossflow dryer. Master Thesis (Mechanical Engineering), Federal University of Campina Grande, Campina Grande, Brazil (2003). (In portuguese)Google Scholar
  28. 28.
    Farias, R.P., Holanda, P.R.H., Lima, A.G.B.: Drying of grains in conveyor dryer and cross flow: a numerical solution using finite-volume method. Braz. J. Agro-ind. Prod. 6(1), 1–16 (2004)Google Scholar
  29. 29.
    Fick, A.: Ueber diffusion. Annln Phys. 170(1), 59–86 (1855)Google Scholar
  30. 30.
    Sun-Tak, Hwang, Kammermeyer, K.: Membranes in Separations. Wiley, New York (1975)Google Scholar
  31. 31.
    Shukla, K.N.: Diffusion Processes During Drying of Solids. World Scientific, Singapore (1990)CrossRefGoogle Scholar
  32. 32.
    Lewis, W.K.: The rate of drying of solid materials. J. Ind. Eng. Chem. 13, 427–432 (1921)CrossRefGoogle Scholar
  33. 33.
    Sherwood, T.K.: The drying of solid, Pt. I. Ind. Eng. Chem. 21, 12–16 (1929)CrossRefGoogle Scholar
  34. 34.
    Sherwood, T.K.: The drying of solids, Pt. II. Ind. Eng. Chem. 21, 976–980 (1929)CrossRefGoogle Scholar
  35. 35.
    Sherwood, T.K.: The drying of solids, Pt. III, Mechanism of the drying of pulp and paper. Ind. Eng. Chem. 22, 132–136 (1930)CrossRefGoogle Scholar
  36. 36.
    Newman, A.B.: Diffusion and surface emission equation. Trans. AIChe. 27, 203–220 (1931)Google Scholar
  37. 37.
    Fortes, M., Okos, M.R.: Drying theories: their bases and limitations as applied to foods and grains. In: Mujumdar, A.S. (ed.) Advances in Drying, vol. 1. Hemisphere Publishing Corporation, Washington (1980)Google Scholar
  38. 38.
    Parry, J.L.: Mathematical modelling and computer simulation of heat and mass transfer in agricultural grain drying. A review. J. Agri. Eng. Res. 32, 1–29 (1985)Google Scholar
  39. 39.
    Jumah, R.Y., Mujumdar, A.S., Raghavan, G.S.V.: A mathematical model for constant and intermittent batch drying of grains in a novel rotating jet spouted bed. Drying Technol. 14(3–4), 765–802 (1996)Google Scholar
  40. 40.
    Rossi, S.J.: Psicrometry. João Pessoa, FUNAPE (1987). p. 60 (In Portuguese)Google Scholar
  41. 41.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)zbMATHGoogle Scholar
  42. 42.
    Maliska, C.R.: Computational Heat Transfer and Fluid Mechanics. Ed. LTC, Rio de Janeiro, Brazil (1995). (In Portuguese)Google Scholar
  43. 43.
    Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Prentice Hall, London (1995)Google Scholar
  44. 44.
    Santiago, D.C., Farias, R.P., Lima, A.G.B.: Modeling and simulation of cross flow band dryer: a finite-volume approach. In: Proceedings of the International Drying Symposium (IDS), Beijing, China, CD-ROM (2002) Google Scholar
  45. 45.
    Fortes, M.: A non-equilibrium thermodynamics approach to transport phenomena in capillary-porous media with special reference of grain and foods. PhD Thesis, Purdue University (1978)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. G. Barbosa de Lima
    • 1
    Email author
  • R. P. de Farias
    • 2
  • S. R. Farias Neto
    • 3
  • E. M. A. Pereira
    • 1
  • J. V. da Silva
    • 1
  1. 1.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  2. 2.Department of Agriculture ScienceState University of ParaibaCatolé do RochaBrazil
  3. 3.Department of Chemical EngineeringFederal University of Campina GrandeCampina GrandeBrazil

Personalised recommendations