Advertisement

Porous Materials Drying Model Based on the Thermodynamics of Irreversible Processes: Background and Application

  • A. G. Barbosa de LimaEmail author
  • J. M. P. Q. Delgado
  • V. A. B. de Oliveira
  • J. C. S. de Melo
  • C. Joaquina e Silva
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 48)

Abstract

This chapter focuses on the heat and mass transfer (drying) in capillary-porous bodies using both the mechanistic and non-equilibrium thermodynamic approaches. A new coupled mathematical modeling to predict heat and moisture (liquid and vapor) transfer in wet capillary-porous bodies with particular reference to prolate spheroidal solids is presented and discussed. The mathematical model is based on the thermodynamics of irreversible processes by considering variable transport coefficients and equilibrium or convective boundary conditions at the surface of the solid. All the partial differential equations presented in the model have been written in prolate spheroidal coordinates. The finite-volume method has been used to obtain the numerical solution of the governing equations. Application has been done to wheat kernel drying and comparison between predicted and experimental data has showed good agreement.

Keywords

Drying Numerical solution Mass Heat Elliptical geometry 

Notes

Acknowledgments

The authors would like to express their thanks to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil), and FINEP (Financiadora de Estudos e Projetos, Brazil) for supporting this work; to the authors of the references in this chapter that helped in our understanding of this complex subject, and to the Editors by the opportunity given to present our research in this book.

References

  1. 1.
    Fortes, M.: A non-equilibrium thermodynamics approach to transport phenomena in capillary-porous media with special reference to drying of grains and foods. Doctorate thesis, Faculty of Purdue University, United States of America (1978)Google Scholar
  2. 2.
    Middleman, S.: An Introduction to Mass and Heat Transfer: Principles of Analysis and Design. John Wiley & Sons Inc., New York (1998)Google Scholar
  3. 3.
    Crank, J.: The Mathematics of Diffusion. Oxford Science Publications, New York (1992)Google Scholar
  4. 4.
    Gebhart, B.: Heat Conduction and Mass Diffusion. McGraw-Hill, New York (1993)Google Scholar
  5. 5.
    Skelland, A.H.P.: Diffusional Mass Transfer. Wiley, New York (1974)Google Scholar
  6. 6.
    Lima, A.G.B., Nebra, S.A.: Theoretical analysis of the diffusion process inside prolate spheroidal solids. Drying Technol. 18(1–2), 21–48 (2000)CrossRefGoogle Scholar
  7. 7.
    Carmo, J.E.F.: Non steady-state diffusion phenomenon in oblate spheroidal solids. Case studies: drying of lentil. Doctorate thesis, Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2004). (In Portuguese)Google Scholar
  8. 8.
    Lima, A.G.B., Queiroz, M.R., Nebra, S.A.: Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chem. Eng. J. 86, 85–93 (2002)CrossRefGoogle Scholar
  9. 9.
    Lima, A.G.B., Queiroz, M.R., Nebra, S.A.: Heat and mass transfer model including shrinkage applied to ellipsoidal products: case study for drying of bananas. Develop. Chem. Eng. Miner. Process. 10, 281–304 (2002)Google Scholar
  10. 10.
    Oliveira, V.A.B., Lima, A.G.B.: Mass diffusion inside prolate spherical solids: An analytical solution. Braz. J. Agro-Ind. Prod. 4(1), 41–50 (2002)Google Scholar
  11. 11.
    Lima, D.R., Farias, S.N., Lima, A.B.G.: Mass transport in spheroids using the Galerkin method. Braz. J. Chem. Eng. 21(4), 667–680 (2004)CrossRefGoogle Scholar
  12. 12.
    Carmo, J.E.F., Lima, A.G.B.: Drying of lentil including shrinkage: a numerical study. Drying Technol. 23, 1977–1992 (2005)CrossRefGoogle Scholar
  13. 13.
    Cihan, A., Kahveci, K., Hacihafizoğlu, O., Lima, A.G.B.: A diffusion based model for intermittent drying of rough rice. Heat Mass Transf. 44, 905–911 (2008)CrossRefGoogle Scholar
  14. 14.
    Hacihafizoğlu, O., Cihan, A., Kahveci, K., Lima, A.G.B.: A liquid diffusion model for thin-layer drying of rough rice. Eur. Food Res. Tech. 226, 787–793 (2008)CrossRefGoogle Scholar
  15. 15.
    Oliveira, V.A.B., Lima, A.G.B.: Drying of wheat based on the non-equilibrium thermodynamics: a numerical study. Drying Technol. 27, 306–313 (2009)CrossRefGoogle Scholar
  16. 16.
    Oliveira, V.A.B., Lima, W.C.P.B., Farias Neto, S.R., Lima, A.G.B.: Heat and mass diffusion and shrinkage in prolate spheroidal bodies based on non-equilibrium thermodynamics: a numerical investigation. J. Porous Media 14(7), 593–605 (2011)CrossRefGoogle Scholar
  17. 17.
    Oliveira, V.A.B., de Lima, A.G.B., Silva, C. J.: Drying of wheat: a numerical study based on the non-equilibrium thermodynamics. Int. J. Food Eng. 8(3), Article 19 (2012)Google Scholar
  18. 18.
    Luikov, A.V., Mikhailov, Y.A.: Theory of Energy and Mass Transfer. Pergamon Press Ltd, Oxford (1965)zbMATHGoogle Scholar
  19. 19.
    Luikov, A.V.: Heat and Mass Transfer in Capillary Porous Bodies. Pergamon Press, New York (1965)Google Scholar
  20. 20.
    Mikhailov, M.D., Shishedjiev, B.K.: Temperature and moisture distributions during contact drying of a moist porous sheet. Int. J. Heat Mass Transf. 18, 15–24 (1975)CrossRefGoogle Scholar
  21. 21.
    Luikov, A.V.: Systems of differential equations of heat and mass transfer in capillary porous bodies: review. Int. J. Heat Mass Transf. 18, 1–14 (1975)zbMATHGoogle Scholar
  22. 22.
    Fortes, M., Okos, M.R.: Drying theories: their bases and limitations as applied to foods and grains. In: Mujumdar, A. (ed.) Advances in Drying, vol. 1, pp. 119–154. Hemisphere Publishing Corporation, New York (1980)Google Scholar
  23. 23.
    Whitaker, S.: Heat and mass transfer in granular porous media. In: Mujumdar, A. (ed.) Advances in Drying, vol. 1, pp. 23-61. Hemisphere Publishing Corporation, New York (1980)Google Scholar
  24. 24.
    Fortes, M., Okos, M.R.: Non-equilibrium thermodynamics approach to heat and mass transfer in corn kernels. Trans. ASAE 24, 761–769 (1981)CrossRefGoogle Scholar
  25. 25.
    Ribeiro, J.W., Cotta, R.M., Mikhailov, M.D.: Integral transform solution of Luikov’s equations for heat and mass transfer in capillary porous media. Int. J. Heat Mass Trans. 36(18), 4467–4475 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Irudayara, J., Wu, Y.: Analysis and application of Luikov’s heat, mass and pressure transfer model to a capillary porous media. Drying Technol. 14(3–4), 803–824 (1996)Google Scholar
  27. 27.
    Santos, G.T., Fortes, M., Martins, J.H., Monteiro, P.M.B.: Convective drying analysis of a single wheat kernel based on an irreversible thermodynamic model. Drying Technol. 31(16), 1979–1993 (2013)CrossRefGoogle Scholar
  28. 28.
    Fortes, M., Okos, M.R., Barret Jr, J.R.: Heat and mass transfer analysis of intra-kernel wheat drying and rewetting. J. Agric. Eng. Res. 26, 109–125 (1981)CrossRefGoogle Scholar
  29. 29.
    Lima, A.G.B., Farias Neto, S.R., Silva, W.P.: Heat and mass transfer in porous materials with complex geometry: fundamentals and applications. In: Delgado, J.M.P.Q. (ed.) Heat and Mass Transfer in Porous Media. Springer, Berlin (2012)Google Scholar
  30. 30.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)CrossRefzbMATHGoogle Scholar
  31. 31.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc., New York (1972)zbMATHGoogle Scholar
  32. 32.
    Philip, J.R., De Vries, D.A.: Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38(2), 222–232 (1957)CrossRefGoogle Scholar
  33. 33.
    De Vries, D.A.: Simultaneous transfer of heat and moisture in porous media. Trans. Am. Geophys. Union 39(5), 909–916 (1958)CrossRefGoogle Scholar
  34. 34.
    Krischer, O.: Die Wissenschaftlichen Grundlagen der Trocknungstechnik, vol. Kap. IX. Springer, Berlin (1963)CrossRefGoogle Scholar
  35. 35.
    Berger, D., Pei, D.C.T.: Drying of hygroscopic capillary porous solids: a theoretical approach. Int. J. Heat Mass Transf. 16, 293–302 (1973)CrossRefGoogle Scholar
  36. 36.
    De Groot, S.R.: Thermodynamics of Irreversible Processes. North Holland Publishing Company, Amsterdan (1951)zbMATHGoogle Scholar
  37. 37.
    Prigogine, I.: Thermodynamic of Irreversible Processes, 2nd edn. Wiley, New York (1961)Google Scholar
  38. 38.
    Oliveira, V.B.: Heat and mass transfer inside prolate spheroidal solids via thermodynamics of irreversible processes. Doctorate thesis, Process Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil (2004). (In Portuguese)Google Scholar
  39. 39.
    Brebbia, C.A., Dominguez, J.: Boundary Elements: an Introductory Course. McGraw-Hill Company, New York (1989)zbMATHGoogle Scholar
  40. 40.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)zbMATHGoogle Scholar
  41. 41.
    Maliska, C.R.: Computational Heat Transfer and Fluid Mechanics, 2nd edn. LTC, Rio de Janeiro (2004). (In Portuguese)Google Scholar
  42. 42.
    Kwon, Y.W., Bang, H.: The finite Element Method Using Matlab. CRC Press, Bora Raton (1997)Google Scholar
  43. 43.
    Mohapatra, D., Rao, P.S.: A Thin layer drying model of parboiled wheat. J. Food Eng. 66, 513–518 (2005)CrossRefGoogle Scholar
  44. 44.
    Singh, H., Singh, A.K., Kushwaha, H.L., Singh, A.: Energy consumption pattern of wheat production in India. Energy 32, 1848–1854 (2007)CrossRefGoogle Scholar
  45. 45.
    FAO Statistical Yearbook 2013. World food and agriculture. Food and Agriculture Organization of the United Nations, Rome (2013)Google Scholar
  46. 46.
    Brooker, D.B., Bakker-Arkema, F.W., Hall, C.W.: Drying and Storage of Grains and Oilseeds. AVI Book, New York (1992)Google Scholar
  47. 47.
    Kazarian, E.A., Hall, C.W.: Thermal properties of grains. Trans. ASAE. 8, 33–37 (1965)CrossRefGoogle Scholar
  48. 48.
    Figliola, R.S., Beasley, D.E.: Theory and Design for Mechanical Measurement. Wiley, New York (1995)Google Scholar
  49. 49.
    Hartley, J.G.: Coupled heat and moisture transfer in soils: a review. In: Mujumdar, A.S. (ed.) Advances in Drying, vol. 4, pp. 199–247. Hemisphere Publishing Corporation, Washington (1987)Google Scholar
  50. 50.
    Shukla, K.N.: Diffusion Process During Drying of Solids. World Scientific, Singapore (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. G. Barbosa de Lima
    • 1
    Email author
  • J. M. P. Q. Delgado
    • 2
  • V. A. B. de Oliveira
    • 3
  • J. C. S. de Melo
    • 1
  • C. Joaquina e Silva
    • 1
  1. 1.Department of Mechanical EngineeringFederal University of Campina GrandeCampina GrandeBrazil
  2. 2.LFC – Building Physics Laboratory, Civil Engineering Department Faculty of EngineeringUniversity of PortoPortoPortugal
  3. 3.Department of Civil EngineeringState University of ParaíbaArarunaBrazil

Personalised recommendations