Skip to main content

A Fast Numerical Methodology for Delamination Growth Initiation Simulation

  • Chapter
  • First Online:
Damage Growth in Aerospace Composites

Part of the book series: Springer Aerospace Technology ((SAT))

  • 2029 Accesses

Abstract

Carbon Fibres Reinforced Plastics composites have been demonstrated particularly suitable for aerospace structural applications due to their high specific strength and stiffness. Nevertheless, the relevant costs related to composites manufacturing and the difficulties in predicting their failure mechanisms have considerably slowed down their integration in the aerospace industry. Furthermore, the lack of robust numerical tools, able to take into account the damage tolerance of composite structures, especially in the preliminary design phases, has led to an over-conservative design, not fully realising the promised economic benefits. Among their several and complex failure mechanisms, composite structures have been demonstrated to be highly sensitive to delaminations arising after impact with foreign objects or caused by manufacturing defects. Hence, in order to design less conservative aerospace composite structures, it is mandatory to account for the effects of delaminations and their evolution even in the earlier stages of the design process. In order to achieve this goal, newer and faster numerical procedures representing the main phenomenological features governing the structural behaviour of damage tolerant composite structures, such as the delamination growth, needs to be developed.Thus, the study presented in this chapter has been aimed at developing a linear approach useful to improve the preliminary design and optimisation of stiffened composite panels tolerant to low velocity impacts induced damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashizawa, M.: Fast interlaminar fracture of a compressively loaded composite containing a defect. In: Proceedings of the Fifth DOD/NASA Conference on Fibrous Composites in Structural Design. NASA Ames Research Center, pp. 1–269 (1981)

    Google Scholar 

  2. Ramkumar, R.L.: Fatigue Degradation in compressively loaded composite laminates. NASA CR-165681 (1981)

    Google Scholar 

  3. Ramkumar, R.L.: Performance of a quantitative study of instability-related delamination growth. NASA CR-166046 (1983)

    Google Scholar 

  4. Byers, B.A.: Behaviour of damaged graphite/epoxy laminates under compression loading. NASA CR-159293 (1980)

    Google Scholar 

  5. Chai, H., Knauss, W.G., Babcock, C.D.: Observation of damage growth in compressively loaded laminates. J. Exp. Mech. 23(3), 329–337 (1983)

    Article  Google Scholar 

  6. Arai, M., Noro, Y., Sugimoto, K.-I., Endo, M.: Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos. Sci. Technol. 68(2), 516–525 (2008)

    Article  Google Scholar 

  7. Tong, L., Sun, X., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42(1), 5–23 (2008)

    Google Scholar 

  8. Yokozeki, T., Aoki, Y., Ogasawara, T.: Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates. Compos. Struct. 82(3), 382–389 (2008)

    Article  Google Scholar 

  9. Gordnian, K., Hadavinia, H., Mason, P.J., Madenci, E.: Determination of fracture energy and tensile cohesive strength in mode I delamination of angle-ply laminated composites. Compos. Struct. 82(4), 577–586 (2008)

    Article  Google Scholar 

  10. Whitcomb, J.D.: Approximate analysis of postbuckled through-the-width delaminations. Compos. Technol. Rev. 4(3), 71–77 (1982)

    Article  Google Scholar 

  11. Whitcomb, J.D.: Parametric analytical study of instability-related delamination growth. Compos. Sci. Technol. 25(1), 18–48 (1986)

    Article  Google Scholar 

  12. Chai, H., Babcok, C.D., Knauss, W.G.: One delamination modelling of failure in laminated plates by delamination buckling. Int. J. Solids. Struct. 17(1), 1069–1083 (1981)

    Article  MATH  Google Scholar 

  13. Shivakumar, K.N., Whitcomb, J.D.: Buckling of a sublaminate in a quasi-isotropic composite laminate. Int. J. Compos. Mater. 19, 2–18 (1985)

    Article  Google Scholar 

  14. Whitcomb, J.D., Shivakumar, K.N.: Strain-energy release rate analysis of a laminate with a postbuckled delamination. numerical methods in fracture mechanics. NASA TM-89091 (1987)

    Google Scholar 

  15. Kim, H.J., Hong, C.S.: Buckling and postbuckling behaviour of composite laminates with an embedded delamination. In: Proceedings of ICCM-10 Whistler, B.C. (1995)

    Google Scholar 

  16. Singh, K.L., Dattaguru, B., Ramamurthy, T.S., Mangalgiri, P.D.: Delamination tolerance studies in laminated composite panels. Sadhana (printed in India) 25(4), 409–422 (2000)

    Article  Google Scholar 

  17. Shahwan, K., Waas, A.M.: Unilateral buckling of rectangular plates. Int. J. Solids Struct. 31(1), 75–89 (1994)

    Article  MATH  Google Scholar 

  18. Shahwan, K., Waas, A.M.: Buckling of unilaterally constrained plates: application to the study of delaminations in layered structures. J. Franklin Inst. 335B(6), 1009–1039 (1998)

    Article  MATH  Google Scholar 

  19. Whitcomb, J.D.: Analysis of a laminate with a postbuckled embedded delamination, including contact effects. Int. J. Compos. Mater. 26(10), 1523–1535 (1992)

    Article  Google Scholar 

  20. Whitcomb, J.D.: Three dimensional analysis of a postbuckled embedded delamination. Int. J. Compos. Mater. 23, 862–889 (1989)

    Article  Google Scholar 

  21. Perugini, P., Riccio, A., Scaramuzzino, F.: Influence of delamination growth and contact phenomena on the compressive behaviour of composite panels. Int. J. Compos. Mater. 33(15), 1433–1456 (1999)

    Article  Google Scholar 

  22. Riccio, A., Perugini, P., Scaramuzzino, F.: Modelling compression behaviour of delaminated composite panels. Comput. Struct. 78, 73–81 (2000)

    Article  Google Scholar 

  23. Nilsson, K.-F., Thesken, J.C., Sindelar, P., Giannakopoulos, A.E., Storakers, B.: A theoretical and experimental investigation of buckling induced delamination growth. J. Mech. Phys. Solids. 41(4), 749–782 (1993)

    Article  Google Scholar 

  24. Gaudenzi, P., Perugini, P., Riccio, A.: Post-buckling behaviour of composite panels in the presence of unstable delaminations. Compos. Struct. 51(3), 301–309 (2001)

    Article  Google Scholar 

  25. Riccio, A., Perugini, P., Scaramuzzino, F.: Embedded delamination growth in composite panels under compressive load. Compos. B Eng. 32(3), 209–218 (2001)

    Article  Google Scholar 

  26. Riccio, A., Scaramuzzino, F., Perugini, P.: Influence of contact phenomena on embedded delamination growth in composites. AIAA J. 41(5), 933–940 (2003)

    Article  Google Scholar 

  27. Davies, G.A.O., Hitchings, D., Ankersen, J.: Predicting delamination and debonding in modern aerospace composite structures. Compos. Sci. Technol. 66, 846–854 (2006)

    Article  Google Scholar 

  28. De Borst, R., Remmers, J.J.C.: Computational modelling of delamination. Compos. Sci. Technol. 66, 713–722 (2006)

    Article  Google Scholar 

  29. Allix, O., Blanchard, L.: Mesomodelling of delamination: towards industrial applications. Compos. Sci. Technol. 66, 731–744 (2006)

    Article  Google Scholar 

  30. Gudmundson, P.: Micromechanically based constitutive models for damage evolution in composite laminates. Int. J. Damage Mech. 9(1), 29–39 (2000)

    Article  Google Scholar 

  31. ABAQUS MANUAL (revision 6.5-1): Theory

    Google Scholar 

  32. Greenhalgh, E., Singh, S., Hughes, D., Roberts, D.: Impact damage resistance and tolerance of stringer stiffened composite structures. Plast. Rubber Compos. Process. Appl. 28(5), 228–251 (1999)

    Article  Google Scholar 

  33. Greenhalgh, E., Meeks, C., Clarke, A., Thatcher, J.: The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels. Compos. A Appl. Sci. Manuf. 34(7), 623–633 (2003)

    Article  Google Scholar 

  34. Greenhalgh, E., Singh, S., Nilsson, K.-F.: Mechanisms and modeling of delamination growth and failure of carbon-fiber reinforced skin-stringer panels. ASTM Spec. Tech. Publ. 1383, 49–71 (2000)

    Google Scholar 

  35. Suemasu, H., Kurihara, K., Arai, K., Majima, O., Ishikawa, T.: Compressive property degradation of composite stiffened panel due to debonding and delaminations. Adv. Compos. Mater: Official J. Jpn Soc. Compos. Mater. 15(2), 139–151 (2006)

    Article  Google Scholar 

  36. ANSYS MANUAL (revision 5) Volume III: Elements DN-R300:50-3

    Google Scholar 

  37. Riccio, A., Gigliotti, M.: A novel numerical delamination growth approach for the preliminary design of damage tolerant composite structures. J. Compos. Mater. 41(16), 1939–1960 (2007)

    Article  Google Scholar 

  38. Faggiani, A., Falzon, B.G.: Optimization strategy for minimizing damage in postbuckling stiffened panels. AIAA J. 45(10), 2520–2528 (2007)

    Article  Google Scholar 

  39. Guédra-Degeorges, D.: Recent advances to assess mono-and multi-delaminations behaviour of aerospace composites. Compos. Sci. Technol. 66, 796–806 (2006)

    Article  Google Scholar 

  40. Bruno, D., Greco, F.: Mixed mode delamination in plates: a refined approach. Int. J. Solids Struct. 38, 9149–9177 (2001)

    Article  MATH  Google Scholar 

  41. Gaudenzi, P., Perugini, P., Spadaccia, F.: Post-buckling analysis of a delaminated composite plate under compression. Compos. Struct. 40(3), 231–238 (1998)

    Google Scholar 

  42. Krueger, R.: The virtual crack closure technique: history, approach and applications. NASA/CR-2002-211628, ICASE Report No. 2002-10 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello Riccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riccio, A., Damiano, M. (2015). A Fast Numerical Methodology for Delamination Growth Initiation Simulation. In: Riccio, A. (eds) Damage Growth in Aerospace Composites. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04004-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04004-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04003-5

  • Online ISBN: 978-3-319-04004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics