Skip to main content

Influence of Intralaminar Damage on the Delamination Crack Evolution

  • Chapter
  • First Online:

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

The aim of this chapter is to investigate the influence of the intralaminar damage (transverse matrix cracks and their associated local delaminations) on the interlaminar damage (delamination) evolution in composite laminate materials. Using specific device setups and coupons, this influence on the delamination onset and growth is demonstrated experimentally. In order to model this inter/intralaminar damage coupling, a cohesive zone model is developed. It takes into account the influence of the local delamination cracks resulting from transverse matrix cracking in the adjacent plies, damages which are both predicted through a continuum damage model of the ply behavior in the laminate. The application of these models to a double-edge-notched specimen under tensile loading clearly demonstrates the importance of the contribution of the introduced coupling on damage pattern. The aim of this chapter is to investigate the influence of the intralaminar damage (transverse matrix cracks and their associated local delaminations) on the interlaminar damage (delamination) evolution in composite laminate materials. Using specific device setups and coupons, this influence on the delamination onset and growth is demonstrated experimentally. In order to model this inter/intralaminar damage coupling, a cohesive zone model is developed. It takes into account the influence of the local delamination cracks resulting from transverse matrix cracking in the adjacent plies, damages which are both predicted through a continuum damage model of the ply behavior in the laminate. The application of these models to a double-edge-notched specimen under tensile loading clearly demonstrates the importance of the contribution of the introduced coupling on damage pattern.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abisset, E., Daghia, F., Ladevèze, P.: On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates. Compos. Part A Appl. Sci. Manuf. 42, 1515–1524 (2011)

    Article  Google Scholar 

  2. Allix, O., Deu, J.F.: Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading. Eng. Trans. Rozprawy Inzynierskie 45(1), 29–46 (1997)

    Google Scholar 

  3. Allix, O., Ladevèze, P.: Interlaminar interface modeling for the prediction of laminate delamination. Compos. Struct. 22, 235–242 (1992)

    Article  Google Scholar 

  4. Allix, O., Ladevèze, P., Corigliano, A.: Damage analysis of interlaminar fracture specimens. Compos. Struct. 31, 61–74 (1995)

    Article  Google Scholar 

  5. Allix, O., Lévêque, D., Perret, L.: Identification and forecast of delamination in composite laminates by an interlaminar interface model. Compos. Sci. Technol. 58(5), 671–678 (1998)

    Article  Google Scholar 

  6. Andersons, J., Knig, M.: Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction. Compos. Sci. Technol. 64, 2139–2152 (2004)

    Article  Google Scholar 

  7. ASTM (1994) Standard test method for mode I interlaminar fracture toughness of unidirectional continuous fiber reinforced composite materials. D5528-94A, Philadelphia, PA

    Google Scholar 

  8. ASTM (2001) Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. D6671-01

    Google Scholar 

  9. ASTM (2006a) Standard test method for measuring the curved beam strength of fibre reinforced polymer matrix composite. D6415/D6415M-06a

    Google Scholar 

  10. ASTM (2006b) Standard test method for short-beam strength of polymer matrix composite materials and their laminates. D2344/D2344M-00

    Google Scholar 

  11. Barenblatt, G.: Mathematical theory of equilibrium cracks in brittle failure. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  12. Benzeggagh, M., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)

    Article  Google Scholar 

  13. Berthelot, J.M.: Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: Static and fatigue loading. Appl. Mech. Rev. 56(1), 111–147 (2003)

    Article  Google Scholar 

  14. Blackman, B., Kinloch, A.: Fracture tests for structural adhesive joints. In: Moore, D., Pavan, A., Williams, J. (eds.) Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, pp. 225–270. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  15. Caiazzo, A., Costanzo, F.: Modeling the constitutive behavior of layered composites with evolving cracks. Int. J. Solid Struct. 38(20), 3469–3485 (2001)

    Article  MATH  Google Scholar 

  16. Camanho, P., Dávila, C., de Moura, M.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37(16), 1415–1438 (2003)

    Article  Google Scholar 

  17. Carlsson, L., Gillepsie, J., Pipes, R.: On the analysis and design of the end notched flexure (ENF) specimen for mode II testing. J. Compos. Mater. 20, 594–604 (1986)

    Article  Google Scholar 

  18. Charrier, J., Carrère, N., Laurin, F., Bretheau, T., Goncalves-Novo, E., Mahdi, S.: Proposition of 3D progressive failure approach and validation on tests cases. In: 14th European Conference on Composite Materials (ECCM/14) (2010)

    Google Scholar 

  19. Charrier, J., Carrère, N., Laurin, F., Goncalves-Novo, E., Mahdi, S.: Proposition d’une méthode d’analyse dédiée aux structures composites soumises à des sollicitations hors-plan. In: 17ème Journées Nationales sur les Composites (JNC 17) (2013)

    Google Scholar 

  20. Choi, N., Kinloch, A., Williams, J.: Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading. J. Compos. Mater. 33, 73–100 (1999)

    Article  Google Scholar 

  21. Crews, J., Reeder, J.: A mixed-mode bending apparatus for delamination testing. Technical report, Langley Research Center, Virginia, USA (1988)

    Google Scholar 

  22. Cui, W., Wisnom, M., Jones, M.: A comparison of failure criteria to predict delamination of unidirectional glass/epoxy specimens waisted through the thickness. Composites 23(3), 158–166 (1992)

    Article  Google Scholar 

  23. Daghia, F., Ladevèze, P.: Identification and validation of an enhanced mesomodel for laminated composites within the WWFE-III. J. Compos. Mater. 47(20–21), 2675–2693 (2013). doi:10.1177/0021998313494095. URL http://jcm.sagepub.com/content/47/20-21/2675

  24. Daudeville, L., Ladevèze, P.: A damage mechanics tool for laminate delamination. Compos. Struct. 25, 547–555 (1993)

    Article  Google Scholar 

  25. Dávila, C., Camanho, P., Turon, A.: Effective simulation of delamination in aeronautical structures using shells and cohesive elements. J. Aircr. 45, 663–672 (2008)

    Article  Google Scholar 

  26. de Morais, A., Pereira, A.: Mixed-mode I + II interlaminar fracture of glass/epoxy multidirectional laminates—part 1: analysis. Compos. Sci. Technol. 66, 1889–1895 (2006)

    Article  Google Scholar 

  27. de Morais, A., Pereira, A.: Application of the effective crack method to mode I and mode II interlaminar fracture of carbon/epoxy unidirectional laminates. Compos. Part A Appl. Sci. Manuf. 38, 785–794 (2007)

    Article  Google Scholar 

  28. de Morais, A., de Moura, M., Marques, A., de Castro, P.: Mode I interlaminar fracture of carbon/epoxy cross-ply composites. Compos. Sci. Technol. 62, 679–686 (2002)

    Article  Google Scholar 

  29. Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  30. Germain, N., Besson, J., Feyel, F.: Composite layered materials: anisotropic nonlocal damage models. Comput. Method Appl. Mech. 196(4144), 4272–4282 (2007). doi:10.1016/j.cma.2007.04.009. URL http://www.sciencedirect.com/science/article/pii/S004578250700182X

  31. Gong, X., Benzeggagh, M.: Mixed mode interlaminar fracture toughness of unidirectional glass/epoxy composite. In: Composite Materials: Fatigue and Fracture, vol. 5, pp. 100–123. ASTM STP 1230 (1995)

    Google Scholar 

  32. Guinard, S., Allix, O., Guédra-Degeorges, D., Vinet, A.: A 3D damage analysis of low-velocity impacts on laminated composites. Compos. Sci. Technol. 62, 585–589 (2002)

    Article  Google Scholar 

  33. Hinton, M., Kaddour, A., Soden, P.: Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise. Elsevier Science Ltd., Oxford (2004)

    Google Scholar 

  34. Huchette, C., Guinot, F.: Experimental and numerical analysis on delamination growth in damaged composite material. In: 13th European Conference on Composite Materials (ECCM/13) (2008)

    Google Scholar 

  35. Huchette, C., Lévêque, D., Carrère, N.: A multiscale damage model for composite laminate based on numerical and experimental complementary tests. In: Sadowski, T. (ed.) IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials, No. 135 in Solid Mechanics and Its Applications, pp. 241–248. Springer, Netherlands (2006). URL http://link.springer.com/chapter/10.1007/1-4020-4566-2_28

  36. Huchette, C.: Sur la complémentarité des approches expérimentales et numériques pour la modélisation des mécanismes d’endommagement des composites stratifiés. Ph.D. thesis, University of Paris VI—Pierre et Marie Curie, France (2005)

    Google Scholar 

  37. ISO (1987) Adhesives—determination of Tensile Strength of Butt Joints. ISO 6922

    Google Scholar 

  38. Jackson, W., Ifju, P.: Through-the-thickness tensile strength of textile composites. Composite materials: testing and design 12, ASTM STP 1274, 218–238 (1996)

    Google Scholar 

  39. Ju, J.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. Int. J. Solids Struct. 25, 803–833 (1989)

    Article  MATH  Google Scholar 

  40. Kortschot, M., Beaumont, P.: Damage mechanics of composite materials. I: a damage based notched strength model. Compos. Sci. Technol. 39, 289–301 (1990)

    Article  Google Scholar 

  41. Kortschot, M., Beaumont, P.: Damage mechanics of composite materials. II: measurements of damage and strength. Compos. Sci. Technol. 39, 303–326 (1990)

    Article  Google Scholar 

  42. Kortschot, M., Beaumont, P., Ashby, M.: Damage mechanics of composite materials. III: prediction of damage growth and notched strength. Compos. Sci. Technol. 40, 147–165 (1991)

    Article  Google Scholar 

  43. Krueger, R.: The virtual crack closure technique: history, approach and applications. Technical report, ICASE, Hampton, Virginia (2002)

    Google Scholar 

  44. Ladevèze, P., LeDantec, E.: Damage modelling of the elementary ply for laminated composites. Compos. Sci. Technol. 43(3), 257–267 (1992). doi:10.1016/0266-3538(92)90097-M. URL http://www.sciencedirect.com/science/article/pii/026635389290097M

  45. Ladevèze, P., Lubineau, G., Marsal, D.: Towards a bridge between the micro- and mesomechanics of delamination for laminated composites. Compos. Sci. Technol. 66, 698–712 (2006)

    Article  Google Scholar 

  46. Laurin, F., Carrère, N., Huchette, C., Maire. J.F.: A multiscale hybrid approach for damage and final failure predictions of composite structures. J. Compos. Mater 47(20–21), 2713–2747 (2013). doi:10.1177/0021998312470151. URL http://jcm.sagepub.com/content/47/20-21/2713

  47. Laurin, F., Carrère, N., Maire, J.F.: A multiscale progressive failure approach for composite laminates based on thermodynamical viscoelastic and damage models. Compos. Part A Appl. Sci. Manuf. 38, 198–209 (2007)

    Article  Google Scholar 

  48. Laurin, F., Charrier, J.S., Lévêque, D., Maire, J.F., Mavel, A., Nunez, P.: Determination of the properties of composite materials thanks to digital image correlation measurements. Procedia IUTAM 4, 106–115 (2012)

    Article  Google Scholar 

  49. Leguillon, D.: Strength or toughness? A criterion for crack onset at a notch. Eur. J. Mech. A-Solid 21, 61–72 (2002)

    Article  MATH  Google Scholar 

  50. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day Edn. Inc., San Francisco (1963)

    Google Scholar 

  51. NASA.: Standard tests for toughened resin composites. Technical report, Langley Research Center, Virginia, USA (1982)

    Google Scholar 

  52. O’Brien, T.: Mixed-mode strain energy-release rate effects on edge delamination of composites. In: 836 AS (ed.) Effects of Defects in Composite Materials. American Society for Testing and Materials, pp. 125–142 (1984)

    Google Scholar 

  53. Olsson, R.: Review—a survey of test methods for multiaxial and out-of-plane strength of composite laminates. Compos. Sci. Technol. 71, 773–783 (2011)

    Article  MathSciNet  Google Scholar 

  54. Ozdil, F., Carlsson, L.: Beam analysis of angle-ply laminate DCB specimens. Compos. Sci. Technol. 59, 305–315 (1999)

    Article  Google Scholar 

  55. Pereira, A., de Morais, A.: Mixed-mode I + II interlaminar fracture of glass/epoxy multidirectional laminates—part 2: experiments. Compos. Sci. Technol. 66, 1896–1902 (2006)

    Article  Google Scholar 

  56. Pereira, A., de Morais, A.: Mixed-mode I + II interlaminar fracture of carbon/epoxy laminates. Compos. Part A Appl. Sci. Manuf. 39, 322–333 (2008)

    Article  Google Scholar 

  57. Pereira, A., de Morais, A.: Mixed-mode I+III interlaminar fracture of carbon/epoxy laminates. Compos. Part A Appl. Sci. Manuf. 40, 518–523 (2009)

    Article  Google Scholar 

  58. Pinho, S., Iannucci, L., Robinson, P.: Formulation and implementation of decohesion elements in an explicit finite element code. Compos. Part A Appl. Sci. Manuf. 37, 778–789 (2006)

    Article  Google Scholar 

  59. Prombut, P.: Caract‚risation de la propagation de délaminage des stratifiés composites multidirectionnels. Ph.D. thesis, University of Toulouse III—Paul Sabatier, France (2007)

    Google Scholar 

  60. Prombut, P., Michel, L., Lachaud, F., Barrau, J.J.: Delamination of multidirectional composite laminates at 0/± ply interfaces. Eng. Fract. Mech. 73, 2427–2442 (2006)

    Article  Google Scholar 

  61. Reeder, J., Crews, J.: Mixed-mode bending method for delamination testing. AIAA J. 28, 1270–1276 (1990)

    Article  Google Scholar 

  62. Reeder, J., Crews, J.: Redesign of the mixed-mode bending delamination test to reduce nonlinear effects. J. Compos. Technol. Res. 14, 12–19 (1992)

    Article  Google Scholar 

  63. Reeder, J.: An evaluation of mixed-mode delamination failure criteria. Technical report, Langley Research Center, Virginia, USA (1992)

    Google Scholar 

  64. Schuecker, C., Davidson, B.: Evaluation of the accuracy of the four-point bend end-notched flexure test for mode II delamination toughness determination. Compos. Sci. Technol. 60, 2137–2146 (2000)

    Article  Google Scholar 

  65. Sun, C., Zheng, S.: Delamination characteristics of double-cantilever beam and end-notched flexure composite specimens. Compos. Sci. Technol. 56, 451–459 (1996)

    Article  Google Scholar 

  66. Talreja, R.: Stiffness properties of composite laminates with matrix cracking and interior delamination. Eng. Fract. Mech. 25(5), 751–762 (1986)

    Article  Google Scholar 

  67. Thionnet, A., Renard. J.: Meso-macro approach to transverse cracking in laminated composites using Talreja’s model. Compos. Eng. 3(9), 851–871 (1993). doi:10.1016/0961-9526(93)90044-K. URL http://www.sciencedirect.com/science/article/pii/096195269390044K

  68. Turon, A.: Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models. Ph.D. thesis, Department d’Enginyeria Mecánica i de la Construcció Industrial, Universitat de Girona, Spain (2006)

    Google Scholar 

  69. Turon, A., Dávila, C., Camanho, P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)

    Article  Google Scholar 

  70. Turon, A., Camanho, P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of intralaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)

    Article  Google Scholar 

  71. Vandellos, T., Hautier, M., Carrère, N., Huchette, C.: Development of a new fracture test to identify the critical energy release rate: the tensile flexure test on notched specimen. Eng. Fract. Mech. 96, 641–655 (2012)

    Article  Google Scholar 

  72. Vandellos, T., Huchette, C., Carrère, N.: Proposition of a framework for the development of a cohesive zone model adapted to carbon-fiber reinforced plastic laminated composites. Compos. Struct. 105, 199–206 (2013)

    Article  Google Scholar 

  73. Whitcomb, J.: Analysis of instability-related growth of a through-width delamination. Technical report, Langley Research Center, Virginia, USA (1984)

    Google Scholar 

  74. Wisnom, M., Hallett, S.: The role of delamination in strength, failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates. Compos. Part A Appl. Sci. Manuf. 40, 335–342 (2009)

    Article  Google Scholar 

  75. Zébulon (2014). URL http://www.zset-software.com/products/zebulon/

Download references

Acknowledgments

The authors would like to express their sincere gratitude to Dr. R. Valle for valuable and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Huchette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huchette, C., Vandellos, T., Laurin, F. (2015). Influence of Intralaminar Damage on the Delamination Crack Evolution. In: Riccio, A. (eds) Damage Growth in Aerospace Composites. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04004-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04004-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04003-5

  • Online ISBN: 978-3-319-04004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics