Skip to main content

The Power-to-Gas Concept

  • Chapter
  • First Online:
Book cover Power-to-Gas: Technology and Business Models

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

This chapter gives an overview of the technological fundamentals of the Power-to-Gas concept. After a general introduction to the concept itself, efficiencies and synergy potentials of the Power-to-Gas technology are described. Furthermore, a very short introduction to similar concepts is given, as well as a view to the technological challenges and restrictions for integration of hydrogen into the natural gas grid. Due to the limited available space, only the main aspects are addressed with reference to further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The by-product of the reforming process is carbon dioxide. Methane steam reforming is the reverse reaction of methanation, see Chap. 4.

  2. 2.

    There are about 134 subsurface gas storage facilities throughout Europe with an aggregate storage volume of 94 billion m3 of natural gas.

  3. 3.

    Exergy describes the part of energy which is convertible to its full extent in any other form of energy. Anergy is the part of the energy which is not convertible to exergy. The sum of exergy and anergy is the total energy. Electric power consists of 100 % exergy (Baehr 1996).

  4. 4.

    A comprehensive study has been performed recently by DVGW (Müller-Syring et al. 2013b). Four distinct locations for Power-to-Gas plants are examined, and specific Power-to-Gas plant concepts are determined.

  5. 5.

    Small Power-to-Gas plants (few 100 kW) may use carbon dioxide from biogas plants, and may also utilize biological methanation instead of chemical. For Power-to-Gas plants in the MW scale, industrial carbon dioxide sources are required, and preferably chemical methanation is used.

  6. 6.

    The way the end product is distributed and stored is mainly a question of the existing infrastructure on site, and the desired utilization of the end product (Müller-Syring et al. 2013b).

  7. 7.

    A gas grid for hydrogen only exists in a few, spatially limited regions. Therefore, hydrogen should be injected to the existing and well established natural gas grid.

  8. 8.

    Natural gas qualities are categorized in H- and L-gas (see also Table 2.2). H-gas contains >96 vol.% CH4, L-gas >88 vol.% CH4 (Müller-Syring et al. 2013b).

  9. 9.

    The Wobbe-index is the ratio of the heating value and the square root of the relative density of the gas. The relative density is the ratio of the gas density to the density of air under standard conditions. The burner power remains constant with same Wobbe-indices despite different heating values (Müller-Syring et al. 2013b).

  10. 10.

    http://www.underground-sun-storage.at/en.html. Accessed 22 May 2014.

References

  • Ausfelder F, Bazzanella A (2008) Verwertung und Speicherung von CO2. Dechema, Frankfurt/Main

    Google Scholar 

  • Baehr HD (1996) Thermodynamik, 9th edn. Springer, Berlin, p 134

    Book  Google Scholar 

  • Bergins C (2014) Energiewende umsetzen mit dem Großanlagenbau. Presentation at ProcessNet-Fachgruppe “Energieverfahrenstechnik”, Karlsruhe, Hitachi Power Europe, 18, February 2014

    Google Scholar 

  • Bilfinger Industrial Technologies (2014) Power-to-liquids. http://www.sunfire.de/wp-content/uploads/BILit_FactSheet_POWER-TO-LIQUIDS_EMS_en.pdf. Accessed 25 May 2014

  • Deutsche Energieagentur (2013) Strategieplattform Power-to-Gas. Thesenpapier: Technik und Technologieentwicklung. http://www.powertogas.info/fileadmin/user_upload/downloads/Positionen_Thesen/PowertoGas_Thesenpapier_Technik.pdf. Accessed 7 May 2014

  • Egner S, Krätschmer W, Faulstich M (2012) Perspektiven der Energiewende. In: Lorber K et al. (eds) DepoTech 2012, Tagungsband zur 11. DepoTech Konferenz, Leoben, pp 49–56

    Google Scholar 

  • Florisson O (2010) Naturally preparing for the hydrogen economy by using the existing natural gas system as catalyst. Final publishable activity report, N.V. Nederlandse Gasunie

    Google Scholar 

  • Frühwirth V (2014) Feasibility study of a large scale power-to-gas system. Master thesis, Montanuniversität Leoben (in preparation)

    Google Scholar 

  • Grond L, Schulze P, Holstein S (2013) Systems analyses power to gas: deliverable 1: technology review. DNV KEMA energy & sustainability, Groningen

    Google Scholar 

  • Haeseldonckx D, D’haeseleer W (2007) The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. EHEC2005 32(10–11):1381–1386

    Google Scholar 

  • Karlsruher Institut für Technologie (ed) (2014) Power-to-Gas: Wind und Sonne in Erdgas speichern. http://www.kit.edu/downloads/pi/KIT_PI_2014_044_Power-to-Gas_-_Wind_und_Sonne_in_Erdgas_speichern_.pdf. Accessed 23 May 2014

  • Kinger G (2012) Green energy conversion and storage (Geco). Endbericht for FFG project 829943, Wien

    Google Scholar 

  • Leiter W, Schüth F, Wagemann K (2014) Diskussionspapier: Überschussstrom nutzbar machen. Dechema, Frankfurt. http://dechema.wordpress.com/2014/01/31/ueberschussstrom_1/. Accessed 15 May 2014

  • Markowz G (2013) Power-to-Chemistry® Ein alternatives Konzept zur chemischen Energiespeicherung. Presentation at Dechema Kolloquium „Wind-to-Gas“ Frankfurt, Evonik Industries, 7 March 2013

    Google Scholar 

  • Markowz G (2014) Power-to-Chemistry® Strom speichern im industriellen Maßstab. Presentation at Innovationskongress Berlin, EVONIK Industries, 7 May 2014

    Google Scholar 

  • Melaina MW, Antonia O, Penev M (2013) Blending hydrogen into natural gas pipeline networks: a review of key issues. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Müller-Syring G, Hüttenrauch J, Zöllner S (2012) Erarbeitung von Basisinformationen zur Positionierung des Energieträgers Erdgas im zukünftigen Energiemix in Österreich: AP 2: Evaluierung der existierenden Infrastrukturen auf Grundlage der ermittelten Potentiale. Abschlussbericht, Leipzig

    Google Scholar 

  • Müller-Syring G et al (2013a) Entwicklung von modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz, DVGW Bericht zu Fördezeichen G 1-07-10:119

    Google Scholar 

  • Müller-Syring G et al (2013b) Entwicklung von modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz. Abschlussbericht, DVGW Förderkennzeichen G1-07-10, Bonn

    Google Scholar 

  • Müller-Syring G, Henel M (2014) Auswirkungen von Wasserstoff im Erdgas in Gasverteilnetzen und bei Endverbrauchern. Gwf Gas-Erdgas:310-312

    Google Scholar 

  • Schöß MA, Redenius A, Turek T, Güttel R (2014) Chemische Speicherung regenerativer elektrischer Energie durch Methanisierung von Prozessgasen aus der Stahlindustrie. Chem Ing Tech 86(5):734–739

    Article  Google Scholar 

  • Sterner M (2009) Bioenergy and renewable power methane in integrated 100 % renewable energy systems. Dissertation, Universität Kassel

    Google Scholar 

  • Sterner M, Jentsch M, Holzhammer U (2011) Energiewirtschaftliche und ökologische Bewertung eines Windgas-Angebotes. Fraunhofer IWES, Kassel, p 18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lehner .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Lehner, M., Tichler, R., Steinmüller, H., Koppe, M. (2014). The Power-to-Gas Concept. In: Power-to-Gas: Technology and Business Models. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-03995-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03995-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03994-7

  • Online ISBN: 978-3-319-03995-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics