Skip to main content

Gait Analysis Using Multiple Kinect Sensors

  • Chapter
  • First Online:
Book cover Advances onto the Internet of Things

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 260))

Abstract

A gait analysis technique to model user presences in an office scenario is presented in this chapter. In contrast with other approaches, we use unobtrusive sensors, i.e., an array of Kinect devices, to detect some features of interest. In particular, the position and the spatio-temporal evolution of some skeletal joints are used to define a set of gait features, which can be either static (e.g., person height) or dynamic (e.g., gait cycle duration). Data captured by multiple Kinects is merged to detect dynamic features in a longer walk sequence. The approach proposed here was been evaluated by using three classifiers (SVM, KNN, Naive Bayes) on different feature subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. consortium, O.: OpenNI. http://www.openni.org/

  3. Cottone, P., Lo Re, G., Maida, G., Morana, M.: Motion sensors for activity recognition in an ambient-intelligence scenario. In: IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 646–651 (2013). doi:10.1109/PerComW.2013.6529573

  4. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  5. Cutting, J.E., Kozlowski, L.T.: Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9(5), 353–356 (1977)

    Article  Google Scholar 

  6. De Paola, A., Gaglio, S., Lo Re, G., Ortolani, M.: Sensor9k : A testbed for designing and experimenting with wsn-based ambient intelligence applications. Pervasive Mob. Comput. 8(3), 448–466 (2012). http://dx.doi.org/10.1016/j.pmcj.2011.02.006

  7. De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: User detection through multi-sensor fusion in an ami scenario. In: Information Fusion (FUSION), pp. 2502–2509 (2012)

    Google Scholar 

  8. De Paola, A., La Cascia, M., Lo Re, G., Morana, M., Ortolani, M.: Mimicking biological mechanisms for sensory information fusion. Biol. Inspired Cogn. Architectures 3(0), 27–38 (2013). doi:10.1016/j.bica.2012.09.002. http://www.sciencedirect.com/science/article/pii/S2212683X12000527

  9. Gafurov, D.: A survey of biometric gait recognition: approaches, security and challenges. In: Annual Norwegian Computer Science Conference, pp. 19–21 (2007)

    Google Scholar 

  10. Gruber, T.R., et al.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)

    Article  Google Scholar 

  11. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  12. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 148–155 (2002)

    Google Scholar 

  13. Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: averaged silhouette. In: Proceedings of the Seventeenth International Conference on Pattern Recognition (ICPR’04), vol. 4, pp. 211–214 (2004)

    Google Scholar 

  14. Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an ambient intelligence scenario. In: Pervasive and Embedded Computing and Communication Systems (PECCS), pp. 29–34 (2013)

    Google Scholar 

  15. Middleton, L., Buss, A., Bazin, A., Nixon, M.: A floor sensor system for gait recognition. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, pp. 171–176 (2005). doi:10.1109/AUTOID.2005.2

  16. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Joint Surg. 46(2), 335–360 (1964)

    Google Scholar 

  17. Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural user identification and tracking. In: CHI’00 Extended Abstracts on Human Factors in Computing Systems, pp. 275–276. ACM Press (2000)

    Google Scholar 

  18. Preis, J., Kessel, M., Werner, M., Linnhoff-Popien, C.: Gait recognition with kinect. In: Proceedings of the First International Workshop on Kinect in Pervasive Computing (2012)

    Google Scholar 

  19. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  20. Shakhnarovich, G., Lee, L., Darrell, T.: Integrated face and gait recognition from multiple views. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 436–439 (2001)

    Google Scholar 

  21. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Gait energy volumes and frontal gait recognition using depth images. In: IEEE International Joint Conference on Biometrics (IJCB), pp. 1–6 (2011)

    Google Scholar 

  22. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  23. Wang, J., She, M., Nahavandi, S., Kouzani, A.: A review of vision-based gait recognition methods for human identification. In: Digital Image Computing Techniques and Applications (DICTA), pp. 320–327 (2010)

    Google Scholar 

  24. Wang, L., Tan, T., Hu, W., Ning, H.: Automatic gait recognition based on statistical shape analysis. IEEE Trans. Image Proc. 12(9), 1120–1131 (2003)

    Article  MathSciNet  Google Scholar 

  25. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  26. Yamauchi, K., Bhanu, B., Saito, H.: Recognition of walking humans in 3d: initial results. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR), pp. 45–52 (2009)

    Google Scholar 

  27. Zhang, H.: The optimality of naive bayes. In: Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (2004)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the PO FESR 2007/2013 grant G73F11000130004 funding the SmartBuildings project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Morana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maida, G., Morana, M. (2014). Gait Analysis Using Multiple Kinect Sensors. In: Gaglio, S., Lo Re, G. (eds) Advances onto the Internet of Things. Advances in Intelligent Systems and Computing, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-319-03992-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03992-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03991-6

  • Online ISBN: 978-3-319-03992-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics