Skip to main content

Effects of Aging on the Cellular Function, Healing, and Mechanical Properties of Ligaments

  • Chapter
  • First Online:
  • 1746 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The extracellular matrix structure, mechanical properties, and cellular response of ligaments are all affected by the aging process. Changes in cellular function in aging ligaments include alterations in expression of growth factor and growth factor receptors, reduced cellular density during healing, and a cellular phenotype during healing that favors degradation of the extracellular matrix. Changes in the extracellular matrix structure include a reduction in mean collagen fibril diameter, increase in the concentration of collagen fibrils, an overall decrease in collagen content, a decrease in the reducible crosslink concentration, an increase in the nonreducible crosslinks, and a decrease in water content. The quasistatic structural properties of bone–ligament–bone complexes and the material properties of the ligament substance decline with aging. The viscoelasticity of ligament decreases with maturation and then remains relatively constant through initial aging. These changes in composition, organization and mechanical properties are produced by changes in cellular function that accompany aging. It seems likely that these changes in cellular phenotype are a result of cellular senescence. Future opportunities for research include identifying the most appropriate and most cost-effective animal models to study the aging of ligaments and possibly taking advantage of engineered rodent models that result in accelerated aging by inducing cellular senescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed AM, Burke DL, Duncan NA, Chan KH (1992) Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation. J Orthop Res 10(6):854–867

    Article  Google Scholar 

  2. Ahmed AM, Hyder A, Burke DL, Chan KH (1987) In vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res 5(2):217–230

    Article  Google Scholar 

  3. Bach JM, Hull ML, Patterson HA (1997) Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament. J Biomech 30(3):281–283

    Article  Google Scholar 

  4. Berns GS, Hull ML, Patterson HA (1992) Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading. J Orthop Res 10(2):167–176

    Article  Google Scholar 

  5. Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ (1991) Articular contact in a three-dimensional model of the knee. J Biomech 24(11):1019–1031

    Article  Google Scholar 

  6. Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. J Bone Joint Surg (Am) 62:259–270

    Google Scholar 

  7. Ellis BJ, Lujan TJ, Dalton MS, Weiss JA (2006) Medial collateral ligament insertion site and contact forces in the ACL-deficient knee. J Orthop Res Official Publ Orthop Res Soc 24(4):800–810. doi:10.1002/jor.20102

    Article  Google Scholar 

  8. Daniel DMAW, O’Connor JJ (eds) (1990) Knee ligaments: structure, function, injury and repair. Raven Press, New York

    Google Scholar 

  9. Gardiner JC, Weiss JA (2003) Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res 21(6):1098–1106

    Article  Google Scholar 

  10. Gardiner JC, Weiss JA, Rosenberg TD (2001) Strain in the human medial collateral ligament during valgus loading of the knee. Clin Orthop 391:266–274

    Article  Google Scholar 

  11. Weiss JA, Gardiner JC (2001) Computational modeling of ligament mechanics. Crit Rev Biomed Eng 29(3):303–371

    Article  Google Scholar 

  12. Woo SL-Y (1986) Biomechanics of tendons and ligaments. In: Frontiers in Biomechanics. New York, pp 180–195

    Google Scholar 

  13. Woo SL-Y, An K-N, Arnoczky SP, Wayne JS, Fithian DC, Myers BS (1994) Anatomy, biology, and biomechanics of tendon, ligament and meniscus. In: Simon S (ed) Orthopaedic basic science. American Academy of Orthopaedic Surgeons, Rosemont, pp 47–74

    Google Scholar 

  14. Woo SL-Y, Weiss JA, MacKenna DA (1990a) Biomechanics and morphology of the medial collateral and anterior cruciate ligaments. In: Mow VaR A and Woo SL-Y (ed) Biomechanics of diarthrodial joints, vol 1. pp 63–103

    Google Scholar 

  15. Abramowitch SD, Papageorgiou CD, Debski RE, Clineff TD, Woo SL (2003) A biomechanical and histological evaluation of the structure and function of the healing medial collateral ligament in a goat model. Knee Surg Sports Traumatol Arthrosc 11(3):155–162. doi:10.1007/s00167-002-0336-5

    Google Scholar 

  16. Anderson DR, Weiss JA, Takai S, Ohland KJ, Woo SL (1992) Healing of the medial collateral ligament following a triad injury: a biomechanical and histological study of the knee in rabbits. J Orthop Res Official Publ Orthop Res Soc 10(4):485–495. doi:10.1002/jor.1100100404

    Article  Google Scholar 

  17. Grood ES, Noyes FR, Butler DL, Suntay WJ (1981) Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg (Am) 63:1257–1269

    Google Scholar 

  18. Ichiba A, Nakajima M, Fujita A, Abe M (2003) The effect of medial collateral ligament insufficiency on the reconstructed anterior cruciate ligament: a study in the rabbit. Acta Orthop Scand 74(2):196–200. doi:10.1080/00016470310013950

    Article  Google Scholar 

  19. Inoue M, McGurk-Burleson E, Hollis JM, Woo SL (1987) Treatment of the medial collateral ligament injury. I: the importance of anterior cruciate ligament on the varus-valgus knee laxity. Am J Sports Med 15(1):15–21

    Article  Google Scholar 

  20. Loitz-Ramage BJ, Frank CB, Shrive NG (1997) Injury size affects long-term strength of the rabbit medial collateral ligament. Clin Orthop Relat Res 337:272–280

    Article  Google Scholar 

  21. Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee—the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg (Am) 58:583–594

    Google Scholar 

  22. Mazzocca AD, Nissen CW, Geary M, Adams DJ (2003) Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament. J Knee Surg 16(3):148–151

    Google Scholar 

  23. Debski RE, Weiss JA, Newman WJ, Moore SM, McMahon PJ (2005) Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination. J Shoulder Elbow Surg/Am Shoulder Elbow Surgeons 14(1 Suppl S):24S–31S. doi:10.1016/j.jse.2004.10.003

  24. Debski RE, Wong EK, Woo SL, Sakane M, Fu FH, Warner JJ (1999) In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Orthop Res 17(5):769–776

    Article  Google Scholar 

  25. Drury NJ, Ellis BJ, Weiss JA, McMahon PJ, Debski RE (2010) The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function. J Biomech Eng 132(12):121003. doi:10.1115/1.4002622

    Article  Google Scholar 

  26. Drury NJ, Ellis BJ, Weiss JA, McMahon PJ, Debski RE (2011) Finding consistent strain distributions in the glenohumeral capsule between two subjects: implications for development of physical examinations. J Biomech 44(4):607–613. doi:10.1016/j.jbiomech.2010.11.018

    Article  Google Scholar 

  27. Ellis BJ, Debski RE, Moore SM, McMahon PJ, Weiss JA (2007) Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex. J Biomech 40(3):603–612. doi:10.1016/j.jbiomech.2006.01.024

    Article  Google Scholar 

  28. Ellis BJ, Drury NJ, Moore SM, McMahon PJ, Weiss JA, Debski RE (2010) Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Comput Methods Biomech Biomed Eng 13(3):413–418. doi:10.1080/10255840903317378

    Article  Google Scholar 

  29. Moore SM, Ellis B, Weiss JA, McMahon PJ, Debski RE (2010) The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model. Ann Biomed Eng 38(1):66–76. doi:10.1007/s10439-009-9834-7

    Article  Google Scholar 

  30. Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res Off Publ Orthop Res Soc 1(3):257–265. doi:10.1002/jor.1100010305

    Article  Google Scholar 

  31. Minns RJSP, Jackson DS (1973) The role of the fibrous components and ground substance in the mechanical properties of biological tissues: A preliminary investigation. J Biomech 6:153–165

    Article  Google Scholar 

  32. Woo SL-YBJ (ed) (1990) Injury and repair of the musculoskeletal soft tissues. Park Ridge, Illinois

    Google Scholar 

  33. Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6(1):11–23

    Article  Google Scholar 

  34. Reese SP, Maas SA, Weiss JA (2010) Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. J Biomech 43(7):1394–1400. doi:10.1016/j.jbiomech.2010.01.004

    Article  Google Scholar 

  35. Dale WC, Baer E (1974) Fibre-buckling in composite systems: A model for the ultra-structure of uncalcified collagen tissue. J Mater Sci 9:369–382

    Article  Google Scholar 

  36. Viidik A (1990) Structure and function of normal and healing tendons and ligaments. In Biomechanics of Diarthrodial Joints. Springer, New York, pp 3–38

    Book  Google Scholar 

  37. Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120(6):757–763

    Article  Google Scholar 

  38. Tanzer ML (1973) Cross-linking of collagen. Science 180:357–370

    Article  Google Scholar 

  39. Ogston AG (ed) (1970) The biological functions of the glycosaminoglycans, vol 3. Chemistry and molecular biology of the intercellular matrix. Academic Press, London

    Google Scholar 

  40. Hannafin JA, Arnoczky SP (1994) Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study. J Orthop Res Official Publ Orthop Res Soc 12(3):350–356. doi:10.1002/jor.1100120307

    Article  Google Scholar 

  41. Atkinson TS, Haut RC, Altiero NJ (1997) A poroelastic model that predicts some phenomenological responses of ligaments and tendons. J Biomech Eng 119(4):400–405

    Article  Google Scholar 

  42. Yin L, Elliott DM (2004) A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension. J Biomech 37(6):907–916. doi:10.1016/j.jbiomech.2003.10.007

    Article  Google Scholar 

  43. Adeeb S, Ali A, Shrive N, Frank C, Smith D (2004) Modelling the behaviour of ligaments: a technical note. Comput Methods Biomech Biomed Eng 7(1):33–42

    Article  Google Scholar 

  44. Wellen J, Helmer KG, Grigg P, Sotak CH (2004) Application of porous-media theory to the investigation of water ADC changes in rabbit Achilles tendon caused by tensile loading. J Magn Reson 170(1):49–55. doi:10.1016/j.jmr.2004.04.021

    Article  Google Scholar 

  45. Benjamin M, Ralphs JR (2000) The cell and developmental biology of tendons and ligaments. Int Rev Cytol 196:85–130

    Article  Google Scholar 

  46. Lo IK, Chi S, Ivie T, Frank CB, Rattner JB (2002) The cellular matrix: a feature of tensile bearing dense soft connective tissues. Histol Histopathol 17(2):523–537

    Google Scholar 

  47. Lo IK, Ou Y, Rattner JP, Hart DA, Marchuk LL, Frank CB, Rattner JB (2002) The cellular networks of normal ovine medial collateral and anterior cruciate ligaments are not accurately recapitulated in scar tissue. J Anat 200(Pt 3):283–296

    Article  Google Scholar 

  48. Woo SL, Weiss JA, Gomez MA, Hawkins DA (1990) Measurement of changes in ligament tension with knee motion and skeletal maturation. J Biomech Eng 112(1):46–51

    Article  Google Scholar 

  49. Cooper RR, Misol S (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52(1):1–20

    Google Scholar 

  50. Benjamin M, Evans EJ, Copp L (1986) The histology of tendon attachments to bone in man. J Anat 149:89–100

    Google Scholar 

  51. Kilborn SH, Trudel G, Uhthoff H (2002) Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. J Am Assoc Lab Anim Sci 41(5):21–26

    Google Scholar 

  52. Woo SL, Ohland KJ, Weiss JA (1990) Aging and sex-related changes in the biomechanical properties of the rabbit medial collateral ligament. Mech Ageing Dev 56(2):129–142

    Article  Google Scholar 

  53. Hall MC (1965) The locomotor system: functional anatomy. Charles C Thomas, Springfield

    Google Scholar 

  54. Masoro EJ (1995) Handbook of physiology: section 11: aging. An American physiological society book. Oxford Press, New York

    Google Scholar 

  55. Kaweblum M, Aguilar MDC, Blancas E, Kaweblum J, Lehman WB, Grant AD, Strongwater AM (1994) Hisotological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J Orthop Res 12(5):747–749

    Article  Google Scholar 

  56. Weisbroth SH, Flatt RE, Kraus AL (1974) The biology of the laboratory rabbit. Academic Press, Inc., New York

    Google Scholar 

  57. Oberbauer A, Currie W, Krook L, Thonney M (1989) Endocrine and histologic correlates of the dynamics of the metacarpal growth plate in growing rams. J Anim Sci 67(11):3124–3135

    Google Scholar 

  58. Oberbauer AM, Krook L, Hogue DE, Currie WB, Thonney ML (1988) Dietary calcium and metacarpal growth in ewes. J Nutr 118(8):976–981

    Google Scholar 

  59. Oishi A, Hamada S, Sakamoto H, Kamiya S, Yanagida K, Kubota C, Watanabe Y, Shimizu R (1996) Radiographical evaluation of bone maturation in Japanese black beef cattle. J Vet Med Sci Jpn Soc Vet Sci 58(6):529–535

    Article  Google Scholar 

  60. Fleshman KR, Margolis JW, Joseph Fu S-C, Wagner B (1985) Age changes in bovine lens endopeptidase activity. Mech Ageing Dev 31(1):37–47

    Article  Google Scholar 

  61. Mastrangelo AN, Magarian EM, Palmer MP, Vavken P, Murray MM (2010) The effect of skeletal maturity on the regenerative function of intrinsic ACL cells. J Orthop Res 28(5):644–651

    Google Scholar 

  62. Douglas WR (1972) Of pigs and men and research. Space life sciences 3(3):226–234

    Google Scholar 

  63. Campbell J, Lee R (1981) Radiological estimation of differential growth rates of the long bones of foals. Equine Vet J 13(4):247–250

    Article  Google Scholar 

  64. Ralston S (1990) Clinical nutrition of adult horses. Vet Clin North Am Equine Pract 6(2):339–354

    MathSciNet  Google Scholar 

  65. Harkness JE (1994) Small rodents. Vet Clin North Am Small Anim Pract 24(1):89–102

    Google Scholar 

  66. Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740. doi:10.1038/nrm2233

    Article  Google Scholar 

  67. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556. doi:10.1083/jcb.201009094

    Article  Google Scholar 

  68. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  Google Scholar 

  69. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460. doi:10.1038/345458a0

    Article  Google Scholar 

  70. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513

    Article  Google Scholar 

  71. Di Leonardo A, Linke SP, Clarkin K, Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21):2540–2551

    Article  Google Scholar 

  72. Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T, Sutherland A, Thorner M, Scrable H (2004) Modulation of mammalian life span by the short isoform of p53. Genes Dev 18(3):306–319. doi:10.1101/gad.1162404

    Article  Google Scholar 

  73. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Park SH, Thompson T, Karsenty G, Bradley A, Donehower LA (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867):45–53. doi:10.1038/415045a

    Article  Google Scholar 

  74. Trougakos IP, Saridaki A, Panayotou G, Gonos ES (2006) Identification of differentially expressed proteins in senescent human embryonic fibroblasts. Mech Ageing Dev 127(1):88–92. doi:10.1016/j.mad.2005.08.009

    Article  Google Scholar 

  75. Telgenhoff D, Shroot B (2005) Cellular senescence mechanisms in chronic wound healing. Cell Death Differ 12(7):695–698. doi:10.1038/sj.cdd.4401632

    Article  Google Scholar 

  76. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257. doi:10.1126/science.1122446

    Article  Google Scholar 

  77. Meller R, Schiborra F, Brandes G, Knobloch K, Tschernig T, Hankemeier S, Haasper C, Schmiedl A, Jagodzinski M, Krettek C, Willbold E (2009) Postnatal maturation of tendon, cruciate ligament, meniscus and articular cartilage: a histological study in sheep. Ann Anat = Anatomischer Anzeiger Official Organ Anatomische Gesellschaft 191(6):575–585. doi:10.1016/j.aanat.2009.08.005

  78. Hofstaetter JG, Saad FA, Sunk IG, Bobacz K, Friehs I, Glimcher MJ (2007) Age-dependent expression of VEGF isoforms and receptors in the rabbit anterior cruciate ligament. Biochim Biophys Acta 1770(7):997–1002. doi:10.1016/j.bbagen.2007.02.006

    Article  Google Scholar 

  79. Vavken P, Saad FA, Murray MM (2010) Age dependence of expression of growth factor receptors in porcine ACL fibroblasts. J Orthop Res 28(8):1107–1112. doi:10.1002/jor.21111

    Google Scholar 

  80. Hsu WH, Peng KT, Lai LJ, Hung CH, Chang PJ (2013) Cellular senescence occurring in the rabbit medial collateral ligament during healing. J Orthop Res 31(1):81–90. doi:10.1002/jor.22194

    Article  Google Scholar 

  81. Frank C, Woo SL, Amiel D, Harwood F, Gomez M, Akeson W (1983) Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med 11(6):379–389

    Article  Google Scholar 

  82. Inoue M, Woo SL, Gomez MA, Amiel D, Ohland KJ, Kitabayashi LR (1990) Effects of surgical treatment and immobilization on the healing of the medial collateral ligament: a long-term multidisciplinary study. Connect Tissue Res 25(1):13–26

    Article  Google Scholar 

  83. Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH (1992) Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res Official Publ Orthop Res Soc 10(4):465–475. doi:10.1002/jor.1100100402

    Article  Google Scholar 

  84. Mastrangelo AN, Haus BM, Vavken P, Palmer MP, Machan JT, Murray MM (2010) Immature animals have higher cellular density in the healing anterior cruciate ligament than adolescent or adult animals. J Orthop Res 28(8):1100–1106. doi:10.1002/jor.21070

    Google Scholar 

  85. Murray MM, Magarian EM, Harrison SL, Mastrangelo AN, Zurakowski D, Fleming BC (2010) The effect of skeletal maturity on functional healing of the anterior cruciate ligament. J Bone Joint Surg Am 92(11):2039–2049. doi:10.2106/jbjs.i.01368

    Article  Google Scholar 

  86. Benatti BB, Silverio KG, Casati MZ, Sallum EA, Nociti FH Jr (2008) Influence of aging on biological properties of periodontal ligament cells. Connect Tissue Res 49(6):401–408. doi:10.1080/03008200802171159

    Article  Google Scholar 

  87. Plate JF, Brown PJ, Walters J, Clark JA, Smith TL, Freehill MT, Tuohy CJ, Stitzel JD, Mannava S (2014) Advanced age diminishes tendon-to-bone healing in a rat model of rotator cuff repair. Am J Sports Med 42(4):859–868. doi:10.1177/0363546513518418

    Article  Google Scholar 

  88. Davankar SP, Deane NJ, Davies AS, Firth EC, Hodge H, Parry DA (1996) Collagen fibril diameter distributions in ligaments and tendons of the carpal region of the horse. Connect Tissue Res 34(1):11–21

    Article  Google Scholar 

  89. Parry DA, Barnes GR, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc Roy Soc Lond Ser B 203(1152):305–321 Containing papers of a Biological character Royal Society

    Article  Google Scholar 

  90. Sargon MF, Doral MN, Atay OA (2004) Age-related changes in human PCLs: a light and electron microscopic study. Knee Surg Sports Traumatol Arthrosc Official J ESSKA 12(4):280–284. doi:10.1007/s00167-003-0427-y

    Article  Google Scholar 

  91. Strocchi R, De Pasquale V, Facchini A, Raspanti M, Zaffagnini S, Marcacci M (1996) Age-related changes in human anterior cruciate ligament (ACL) collagen fibrils. Italian journal of anatomy and embryology =. Archivio italiano di anatomia ed embriologia 101(4):213–220

    Google Scholar 

  92. Amiel D, Kuiper SD, Wallace CD, Harwood FL, VandeBerg JS (1991) Age-related properties of medial collateral ligament and anterior cruciate ligament: a morphologic and collagen maturation study in the rabbit. J Gerontol 46(4):B159–B165

    Article  Google Scholar 

  93. Osakabe T, Hayashi M, Hasegawa K, Okuaki T, Ritty TM, Mecham RP, Wachi H, Seyama Y (2001) Age- and gender-related changes in ligament components. Ann Clin Biochem 38(Pt 5):527–532

    Article  Google Scholar 

  94. Parry DA, Craig AS, Barnes GR (1978) Tendon and ligament from the horse: an ultrastructural study of collagen fibrils and elastic fibres as a function of age. Proc Roy Soc Lond Ser B 203(1152):293–303 Containing papers of a Biological character Royal Society

    Article  Google Scholar 

  95. Frank C, McDonald D, Lieber R, Sabiston P (1988) Biochemical heterogeneity within the maturing rabbit medial collateral ligament. Clin Orthop Relat Res 236:279–285

    Google Scholar 

  96. Tohno Y, Moriwake Y, Takano Y, Minami T, Tohno S, Utsumi M, Yamada M, Yamamoto K, Okazaki Y, Takakura Y (1999) Age-related changes of elements in human anterior cruciate ligaments and ligamenta capitum femorum. Biol Trace Elem Res 68(2):181–192

    Article  Google Scholar 

  97. Fremerey R, Bastian L, Siebert WE (2000) The coracoacromial ligament: anatomical and biomechanical properties with respect to age and rotator cuff disease. Knee Surg Sports Traumatol Arthrosc Official J ESSKA 8(5):309–313

    Article  Google Scholar 

  98. Lee TQ, Dettling J, Sandusky MD, McMahon PJ (1999) Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin Biomech 14(7):471–476

    Article  Google Scholar 

  99. Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg Am 58(8):1074–1082

    Google Scholar 

  100. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225

    Article  Google Scholar 

  101. Lam TC, Frank CB, Shrive NG (1993) Changes in the cyclic and static relaxations of the rabbit medial collateral ligament complex during maturation. J Biomech 26(1):9–17

    Article  Google Scholar 

  102. Woo SL, Peterson RH, Ohland KJ, Sites TJ, Danto MI (1990) The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res Official Publ Orthop Res Soc 8(5):712–721. doi:10.1002/jor.1100080513

    Article  Google Scholar 

  103. Woo SL, Orlando CA, Gomez MA, Frank CB, Akeson WH (1986) Tensile properties of the medial collateral ligament as a function of age. J Orthop Res Official Publ Orthop Res Soc 4(2):133–141. doi:10.1002/jor.1100040201

    Article  Google Scholar 

Download references

Acknowledgments

Support from NIH grants #R01AR047369 and #R01EB015133 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ellis, B.J., Weiss, J.A. (2015). Effects of Aging on the Cellular Function, Healing, and Mechanical Properties of Ligaments. In: Derby, B., Akhtar, R. (eds) Mechanical Properties of Aging Soft Tissues. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-03970-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03970-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03969-5

  • Online ISBN: 978-3-319-03970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics