Double Allee Effects on Prey in a Modified Rosenzweig-MacArthur Predator-Prey Model

  • Eduardo González-OlivaresEmail author
  • Jaime Huincahue-Arcos
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 307)


In this work, a modified Rosenzweig-MacArthur predator-prey model is analyzed, which is a particular Gause type model, considering two Allee effect affecting the prey population.

This phenomenon may be expressed by different mathematical expressions; with the form here used, the existence of one limit cycle surrounding a positive equilibrium point is proved.

Conditions to the existence of equilibrium points and their local stability are established; moreover, the existence of a separatrix curve dividing the behavior of trajectories which can have different ω-limit sets.

Some simulations reinforced our results are given and the ecological consequences are discussed.


Predator-prey model Functional response Allee effect Stability Bifurcation Limit cycle 



The authors thank the members of the Grupo de Ecología Matemática on the Instituto de Matemáticas at the Pontificia Universidad Católica de Valparaíso, for their valuable comments and suggestions. This work is partially financed by Projects Fondecyt No 1120218 and DIEA-PUCV 124.730/2012.


  1. 1.
    Angulo E, Roemer GW, Berec L, Gascoigne J, Courchamp F (2007) Double Allee effects and extinction in the island fox. Conservation Biology 21: 1082–1091.CrossRefGoogle Scholar
  2. 2.
    Barclay H, Mackauer M, (1980) The sterile insect release method for pest control: a density-dependent model. Environmental Entomology 9: 810–817.Google Scholar
  3. 3.
    Bazykin AD (1998) Nonlinear Dynamics of interacting populations, World Scientific Publishing Co. Pte. Ltd.Google Scholar
  4. 4.
    Berec L (2007) Models of Allee effects and their implications for population and community dynamics, In: Mondaini R (Ed.) Proceedings of the 2007 International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., pp. 179–207.Google Scholar
  5. 5.
    Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management, Trends in Ecology and Evolution 22: 185–191.Google Scholar
  6. 6.
    Boukal DS, Berec L (2002) Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters. Journal of Theoretical Biology 218: 375–394.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Boukal DS, Sabelis MW, Berec L (2007) How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theoretical Population Biology 72: 136–147.CrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng KS (1981) Uniqueness of a limit cycle for a predator-prey system, SIAM Journal on Applied Mathematics 12: 541–548.CrossRefzbMATHGoogle Scholar
  9. 9.
    Chicone C (2006) Ordinary differential equations with applications (2nd edition). Texts in Applied Mathematics 34, Springer.Google Scholar
  10. 10.
    Clark CW (2010) Mathematical Bioeconomics: The Mathematics of Conservation (3nd ed). John Wiley and Sons Inc.Google Scholar
  11. 11.
    Coleman CS (1983) Hilbert’s 16th. Problem: How Many Cycles? In: Braun M, Coleman CS, Drew D (Eds). Differential Equations Model, Springer Verlag, pp. 279–297.Google Scholar
  12. 12.
    Conway ED, Smoller JA (1986) Global Analysis of a System of Predator-Prey Equations. SIAM Journal on Applied Mathematics 46: 630–642.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Courchamp F, Berec L, Gascoigne J (2008) Allee Effects in Ecology and Conservation, Oxford University Press.Google Scholar
  14. 14.
    Dumortier F, Llibre J, Artés JC (2006) Qualitative theory of planar differential systems, Springer.Google Scholar
  15. 15.
    Flores JD, Mena-Lorca J, González-Yañez B, González-Olivares E (2007) Consequences of Depensation in a Smith’s Bioeconomic Model for open-access Fishery. In: Mondaini R. (Ed.) Proceedings of the 2006 International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., pp. 219–232.Google Scholar
  16. 16.
    Freedman HI (1980) Deterministic Mathematical Model in Population Ecology, Marcel Dekker.Google Scholar
  17. 17.
    González-Olivares E, Ramos-Jiliberto R (2003) Dynamics consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecological Modelling 106: 135–146.CrossRefGoogle Scholar
  18. 18.
    González-Olivares E, González-Yañez B, Mena-Lorca J, Ramos-Jiliberto R (2007) Modelling the Allee effect: are the different mathematical forms proposed equivalents? In: Mondaini R (Ed.) Proceedings of the 2006 International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., Río de Janeiro, pp. 53–71.Google Scholar
  19. 19.
    González-Olivares E, Meneses-Alcay H, González-Yañez B, Mena-Lorca J, Rojas-Palma A, Ramos-Jiliberto R (2011) A Gause type predator-prey model with Allee effect on prey: Multiple stability and uniqueness of limit cycle. Nonlinear Analysis: Real World Applications 12: 2931–2942.Google Scholar
  20. 20.
    González-Olivares E, González-Yañez B, Mena-Lorca J, Rojas-Palma A, Flores JD (2011) Consequences of double Allee effect on the number of limit cycles in a predator-prey model. Computers and Mathematics with Applications 62: 3449–3463.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Hasík K (2010) On a predator-prey system of Gause type. Journal of Mathematical Biology 60: 59–74.CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kuang Y, Freedman HI (1988) Uniqueness of limit cycles in Gause-type models of predator-prey systems. Mathematical Biosciences 88: 67–84.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Liermann M, Hilborn R (2001) Depensation: evidence, models and implications. Fish and Fisheries 2: 33–58.CrossRefGoogle Scholar
  24. 24.
    Meneses-Alcay H, González-Yañez E (2004) Consequences of the Allee effect on Rosenzweig-MacArthur predator-prey model. In: Mondaini R (ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003, E-papers Serviços Editoriais Ltda., Volumen 2 pp. 264–277.Google Scholar
  25. 25.
    Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution 14: 401–405.Google Scholar
  26. 26.
    Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect?. Oikos 87: 185–190.CrossRefGoogle Scholar
  27. 27.
    Turchin P (2003) Complex population dynamics. A theoretical/empirical synthesis, Monographs in Population Biology 35, Princeton University Press.Google Scholar
  28. 28.
    van Voorn GAK, Hemerik L, Boer MP, Kooi BW (2007) Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Mathematical Biosciences 209: 451–469.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Wang J, Shi J, Wei J (2011). Predator-prey system with strong Allee effect in prey. Journal of Mathematical Biology 62: 291–331.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Xiao D, Zhang Z (2003) On the uniqueness and nonexistence of limit cycles for predator-prey systems. Nonlinearity 16: 1185–1201.CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Zu J, Mimura M (2010) The impact of Allee effect on a predator-prey system with Holling type II functional response. Applied Mathematics and Computation 217: 3542–3556.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eduardo González-Olivares
    • 1
    Email author
  • Jaime Huincahue-Arcos
    • 1
    • 2
  1. 1.Grupo de Ecología Matemática, Instituto de MatemáticasPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Departamento de MatemáticasUniversidad de Playa AnchaValparaísoChile

Personalised recommendations