Skip to main content

Double Allee Effects on Prey in a Modified Rosenzweig-MacArthur Predator-Prey Model

  • Chapter
  • First Online:
Book cover Computational Problems in Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 307))

Abstract

In this work, a modified Rosenzweig-MacArthur predator-prey model is analyzed, which is a particular Gause type model, considering two Allee effect affecting the prey population.

This phenomenon may be expressed by different mathematical expressions; with the form here used, the existence of one limit cycle surrounding a positive equilibrium point is proved.

Conditions to the existence of equilibrium points and their local stability are established; moreover, the existence of a separatrix curve dividing the behavior of trajectories which can have different ω-limit sets.

Some simulations reinforced our results are given and the ecological consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angulo E, Roemer GW, Berec L, Gascoigne J, Courchamp F (2007) Double Allee effects and extinction in the island fox. Conservation Biology 21: 1082–1091.

    Article  Google Scholar 

  2. Barclay H, Mackauer M, (1980) The sterile insect release method for pest control: a density-dependent model. Environmental Entomology 9: 810–817.

    Google Scholar 

  3. Bazykin AD (1998) Nonlinear Dynamics of interacting populations, World Scientific Publishing Co. Pte. Ltd.

    Google Scholar 

  4. Berec L (2007) Models of Allee effects and their implications for population and community dynamics, In: Mondaini R (Ed.) Proceedings of the 2007 International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., pp. 179–207.

    Google Scholar 

  5. Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management, Trends in Ecology and Evolution 22: 185–191.

    Google Scholar 

  6. Boukal DS, Berec L (2002) Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters. Journal of Theoretical Biology 218: 375–394.

    Article  MathSciNet  Google Scholar 

  7. Boukal DS, Sabelis MW, Berec L (2007) How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. Theoretical Population Biology 72: 136–147.

    Article  MATH  Google Scholar 

  8. Cheng KS (1981) Uniqueness of a limit cycle for a predator-prey system, SIAM Journal on Applied Mathematics 12: 541–548.

    Article  MATH  Google Scholar 

  9. Chicone C (2006) Ordinary differential equations with applications (2nd edition). Texts in Applied Mathematics 34, Springer.

    Google Scholar 

  10. Clark CW (2010) Mathematical Bioeconomics: The Mathematics of Conservation (3nd ed). John Wiley and Sons Inc.

    Google Scholar 

  11. Coleman CS (1983) Hilbert’s 16th. Problem: How Many Cycles? In: Braun M, Coleman CS, Drew D (Eds). Differential Equations Model, Springer Verlag, pp. 279–297.

    Google Scholar 

  12. Conway ED, Smoller JA (1986) Global Analysis of a System of Predator-Prey Equations. SIAM Journal on Applied Mathematics 46: 630–642.

    Article  MATH  MathSciNet  Google Scholar 

  13. Courchamp F, Berec L, Gascoigne J (2008) Allee Effects in Ecology and Conservation, Oxford University Press.

    Google Scholar 

  14. Dumortier F, Llibre J, Artés JC (2006) Qualitative theory of planar differential systems, Springer.

    Google Scholar 

  15. Flores JD, Mena-Lorca J, González-Yañez B, González-Olivares E (2007) Consequences of Depensation in a Smith’s Bioeconomic Model for open-access Fishery. In: Mondaini R. (Ed.) Proceedings of the 2006 International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., pp. 219–232.

    Google Scholar 

  16. Freedman HI (1980) Deterministic Mathematical Model in Population Ecology, Marcel Dekker.

    Google Scholar 

  17. González-Olivares E, Ramos-Jiliberto R (2003) Dynamics consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecological Modelling 106: 135–146.

    Article  Google Scholar 

  18. González-Olivares E, González-Yañez B, Mena-Lorca J, Ramos-Jiliberto R (2007) Modelling the Allee effect: are the different mathematical forms proposed equivalents? In: Mondaini R (Ed.) Proceedings of the 2006 International Symposium on Mathematical and Computational Biology, E-papers Serviços Editoriais Ltda., Río de Janeiro, pp. 53–71.

    Google Scholar 

  19. González-Olivares E, Meneses-Alcay H, González-Yañez B, Mena-Lorca J, Rojas-Palma A, Ramos-Jiliberto R (2011) A Gause type predator-prey model with Allee effect on prey: Multiple stability and uniqueness of limit cycle. Nonlinear Analysis: Real World Applications 12: 2931–2942.

    Google Scholar 

  20. González-Olivares E, González-Yañez B, Mena-Lorca J, Rojas-Palma A, Flores JD (2011) Consequences of double Allee effect on the number of limit cycles in a predator-prey model. Computers and Mathematics with Applications 62: 3449–3463.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hasík K (2010) On a predator-prey system of Gause type. Journal of Mathematical Biology 60: 59–74.

    Article  MathSciNet  Google Scholar 

  22. Kuang Y, Freedman HI (1988) Uniqueness of limit cycles in Gause-type models of predator-prey systems. Mathematical Biosciences 88: 67–84.

    Article  MATH  MathSciNet  Google Scholar 

  23. Liermann M, Hilborn R (2001) Depensation: evidence, models and implications. Fish and Fisheries 2: 33–58.

    Article  Google Scholar 

  24. Meneses-Alcay H, González-Yañez E (2004) Consequences of the Allee effect on Rosenzweig-MacArthur predator-prey model. In: Mondaini R (ed.) Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003, E-papers Serviços Editoriais Ltda., Volumen 2 pp. 264–277.

    Google Scholar 

  25. Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution 14: 401–405.

    Google Scholar 

  26. Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect?. Oikos 87: 185–190.

    Article  Google Scholar 

  27. Turchin P (2003) Complex population dynamics. A theoretical/empirical synthesis, Monographs in Population Biology 35, Princeton University Press.

    Google Scholar 

  28. van Voorn GAK, Hemerik L, Boer MP, Kooi BW (2007) Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Mathematical Biosciences 209: 451–469.

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang J, Shi J, Wei J (2011). Predator-prey system with strong Allee effect in prey. Journal of Mathematical Biology 62: 291–331.

    Article  MATH  MathSciNet  Google Scholar 

  30. Xiao D, Zhang Z (2003) On the uniqueness and nonexistence of limit cycles for predator-prey systems. Nonlinearity 16: 1185–1201.

    Article  MATH  MathSciNet  Google Scholar 

  31. Zu J, Mimura M (2010) The impact of Allee effect on a predator-prey system with Holling type II functional response. Applied Mathematics and Computation 217: 3542–3556.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors thank the members of the Grupo de Ecología Matemática on the Instituto de Matemáticas at the Pontificia Universidad Católica de Valparaíso, for their valuable comments and suggestions. This work is partially financed by Projects Fondecyt No 1120218 and DIEA-PUCV 124.730/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo González-Olivares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González-Olivares, E., Huincahue-Arcos, J. (2014). Double Allee Effects on Prey in a Modified Rosenzweig-MacArthur Predator-Prey Model. In: Mastorakis, N., Mladenov, V. (eds) Computational Problems in Engineering. Lecture Notes in Electrical Engineering, vol 307. Springer, Cham. https://doi.org/10.1007/978-3-319-03967-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03967-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03966-4

  • Online ISBN: 978-3-319-03967-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics