A Polynomial Matrix Approach to the Descriptor Systems

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 307)


In this chapter, we will propose an analysis method of the descriptor systems using the regularizing polynomial matrix. The regularizing matrix compensates the singularity of the descriptor systems, like an interactor matrix. We will show that the degree of the regularizing polynomial matrix presents a structure aspect of a given descriptor system.


Linear multivariable systems Descriptor systems Polynomial matrix Regularizing matrix 


  1. 1.
    Luenberger DG (1977) Dynamic equation in descriptor form, IEEE Trans. Automat. Contr., 22:312–321.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dai L (1989) Singular control systems, Springer-Verlag, BerlinCrossRefzbMATHGoogle Scholar
  3. 3.
    Lewis A (1992) A tutorial on the geometric analysis of linear time-invariant implicit systems, Automatica, 28:119–137CrossRefzbMATHGoogle Scholar
  4. 4.
    Verghese GC, Levy BC, Kailath T (1981) A generalized state-space for singular systems, IEEE Trans. Automat. Contr., 26:811–831CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Wolovich WA, Falb PL (1976) Invariants and canonical form under dynamic compensations, SIAM J. Contr. and Optim., 14:996–1008CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Mutoh Y, Ortega R (1993) Interactor structure estimation for adaptive control of discrete-time multivariable nondecouplable systems, Automatica, 29:635–647CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kase W, Mutoh Y (2009) A simple derivation of interactor matrix and its applications, Int. J. Systems Sciences 40:1197–1205CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electrical and Electronic Systems EngineeringOsaka Institute of TechnologyOsakaJapan

Personalised recommendations