Skip to main content

Exponentially Inhomogeneous Piezoelectric Solid with a Circular Anti-plane Hole

  • Chapter
  • First Online:
Dynamic Fracture of Piezoelectric Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 212))

  • 1758 Accesses

Abstract

This chapter addresses the evaluation of the stress and electric field concentrations around a circular hole in a functionally graded piezoelectric plane subjected to anti-plane elastic SH-wave and in-plane time-harmonic electric load. All material parameters vary exponentially along a line of arbitrary orientation in the plane of the piezoelectric material under consideration. Numerical solutions with non-hypersingular traction BIEM for the stress and electric field concentration factors (SCF and EFCF, respectively) around the perimeter of the hole are obtained. Presented are results showing the dependence on various system parameters as e.g. the electro-mechanical coupling, the type of the dynamic load and its characteristics, the wave-hole and wave-material interaction and the magnitude and direction of the material inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akamatsu M, Nakamura G (2002) Well-posedness of initial-boundary value problems for piezoelectric equations. Appl Anal 81:129–141

    Article  MATH  MathSciNet  Google Scholar 

  2. Chung MY, Ting TCT (1996) Bleustein–Gulyaev waves in some functionally graded materials. Int J Solids Struct 33:3343–3361

    Article  MATH  MathSciNet  Google Scholar 

  3. Daros CH (2010) On modelling SH-waves in a class of inhomogeneous anisotropic media via the boundary element method. ZAMM-Z Angew Math Mech 90:113–121

    Article  MATH  MathSciNet  Google Scholar 

  4. Deeg W F (1980) The analysis of dislocation, cracks and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University, Stanford, California

    Google Scholar 

  5. Dineva P, Rangelov T (2009) Time-harmonic behavior of a cracked inhomogeneous piezoelectric solid by BIEM. J Theor Appl Mech 39(4):93–100

    Google Scholar 

  6. Dineva P, Gross D, Müller R, Rangelov T (2011) Dynamic stress and electric field concentration in a functionally graded piezoelectric solid with a hole. ZAMM-Z Angew Math Mech 91(2):110–124

    Article  MATH  MathSciNet  Google Scholar 

  7. Fang XQ (2008) Multiple scattering of electro-elastic waves from a buried cavity in a functionally graded piezoelectric material layer. Int J Solids Struct 45:5716–5729

    Article  MATH  Google Scholar 

  8. Fang XQ, Hu C, Du SY (2006) Strain energy density of a circular cavity buried in a semi-infinite functionally graded materials subjected to shear waves. Theor Appl Fract Mech 46:166–174

    Article  Google Scholar 

  9. Fang XQ, Hu C, Huang WH (2007) Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves. Eur J Mech A Solids 26:1016–1028

    Article  MATH  Google Scholar 

  10. Gross D, Rangelov T, Dineva P (2005) 2D Wave scattering by a crack in a piezoelectric plane using traction BIEM. Struct Integr Dur 1(1):35–47

    Google Scholar 

  11. Hwu C, Liao CY (1994) Special boundary element for the problems of multi-holes, cracks and inclusions. Comput Struct 51(1):23–31

    Article  MATH  Google Scholar 

  12. Jiang CP, Tong ZH, Cheung YK (2001) A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mech Mater 33:295–308

    Article  Google Scholar 

  13. Lee JS (1995) Boundary element method for electroelastic interaction in piezoceramics. Eng Anal Bound Elem 15:321–328

    Article  Google Scholar 

  14. Liu Y, Fan H (2001) On the conventional boundary integral formulation for piezoelectric solidwith defects or thin shapes. Eng Anal Bound Elem 25:77–91

    Article  MATH  Google Scholar 

  15. Lu JF, Hanyga A (2004) Dynamic interaction between multiple cracks and a circular hole swept by SH waves. Int J Solids Struct 41:6725–6744

    Article  MATH  Google Scholar 

  16. Manolis G (2003) Elastic wave scattering around cavities in inhomogeneous continua by the BEM. J Sound Vibr 226(2):281–305

    Article  Google Scholar 

  17. Meguid SA, Zhong Z (1998) On the elliptical inhomogeneity problem in piezoelectric materials under antiplane sjear and inplane electric field. Int J Eng Sci 36(3):329–344

    Article  Google Scholar 

  18. Pak YE (1992a) Circular inclusion problem in antiplane piezoelectricity. Int J Solids Struct 29:2403–2419

    Article  MATH  Google Scholar 

  19. Pak YE (2010) Elliptical inclusion problem in antiplane piezoelectricity: implications for fracture mechanics. Int J Eng Sci 48:209–222

    Article  Google Scholar 

  20. Pao YH, Mow CC (1971) Diffraction of elastic waves and dynamic stress concentration. Crane Russak, New York

    Google Scholar 

  21. Perez-Aparicio JL, Sosa H, Palma R (2007) Numerical investigations of field-defect interactions in piezoelectric ceramics. Int J Solids Struct 44:4892–4908

    Article  MATH  Google Scholar 

  22. Shindo Y, Moribayashi H, Narita F (2002) Scattering of antiplane shear waves by a circular piezoelectric inclusion embedded in a piezoelectric medium subjected to a steady-state electrical load. ZAMM-Z Angew Math Mech 82:43–49

    Article  MATH  Google Scholar 

  23. Song T, Li H, Dong J (2006) Dynamic anti-plane behaviour of the interaction between a crack and a circular cavity in a piezoelectric medium. Key Eng Mater 324(325):29–32

    Article  Google Scholar 

  24. Sosa H (1991) Plane problems in piezoelectric media with defects. Int J Solids Strut 28:491–505

    Article  MATH  Google Scholar 

  25. Sosa H, Khutoryansky N (1996) New developments concerning piezoelectric materials with defects. Int J Solids Struct 33:3399–3414

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang BL (1992) Three-dimensional analysis on an ellipsoidal inclusion in a piezoelectric material. Int J Solids Struct 29:293–308

    Article  MATH  Google Scholar 

  27. Wang CY, Zhang Ch (2005) 2D and 3D dynamic Green’s functions and time-domain BIE formulations for piezoelectric solids. Eng Anal Bound Elem 29:454–465

    Article  MATH  Google Scholar 

  28. Xu LY, Rajapakse RKND (1998) Boundary element analysis of piezoelectric solids with defects. Eng Fract Mech 29B:655–669

    Google Scholar 

  29. Zhang C, Gross D (1998) On wave propagation in elastic solids with cracks. Computational Mechanics Publications, Southampton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsviatko Rangelov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dineva, P., Gross, D., Müller, R., Rangelov, T. (2014). Exponentially Inhomogeneous Piezoelectric Solid with a Circular Anti-plane Hole. In: Dynamic Fracture of Piezoelectric Materials. Solid Mechanics and Its Applications, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-319-03961-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03961-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03960-2

  • Online ISBN: 978-3-319-03961-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics