Skip to main content

Functionally Graded Piezoelectric Media with a Single Anti-plane Crack

  • Chapter
  • First Online:
Dynamic Fracture of Piezoelectric Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 212))

  • 1781 Accesses

Abstract

Treated is an arbitrarily shaped anti-plane shear crack in a finite inhomogeneous piezoelectric domain under time-harmonic loading. Within a unified scheme different types of inhomogeneity are considered for which the material parameters may vary in arbitrary directions. The problem is solved by using a numerically efficient non-hypersingular traction BIEM. The fundamental solutions for the different inhomogeneity types are derived in closed form. Numerical results for the SIFs are discussed. They show the effect of the material inhomogeneity type and characteristics and the efficiency of the computational method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akamatsu M, Nakamura G (2002) Well-posedness of initial-boundary value problems for piezoelectric equations. Appl Anal 81:129–141

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen J, Liu ZX, Zou ZZ (2003a) The central crack problem for a functionally graded piezoelectric strip. Int J Fract 121:81–94

    Article  Google Scholar 

  3. Chen J, Soh AK, Liu J, Liu ZX (2004) Transient anti-plane crack problem of a func-tionally graded piezoelectric strip bonded to elastic layers. Acta Mech 169:87–100

    Article  MATH  Google Scholar 

  4. Chen ZT (2006) Dynamic fracture mechanics study of an electrically impermeable mode III crack in a transversely isotropic piezoelectric material under pure electrical load. Int J Fract 141:395–402

    Article  MATH  Google Scholar 

  5. Chue CH, Ou YL (2005) Mode III crack problems for two bonded functionally graded piezoelectric materials. Int J Solids Struct 42:3321–3337

    Article  MATH  Google Scholar 

  6. Courant R, Hilbert D (1962) Methods of mathematical physics, vol II. Willey, New York

    MATH  Google Scholar 

  7. Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. J Appl Mech 50:609–614

    Article  MATH  Google Scholar 

  8. Dineva P, Rangelov T, Manolis G (2007) Elastic wave propagation in a class of cracked functionally graded materials by BIEM. Comput Mech 39:293–308

    Article  MATH  Google Scholar 

  9. Erdogan F (2000) Finite element technique for dynamic crack analysis in piezoelectrics. Int J Solids Struct 37:171–183

    Article  MATH  MathSciNet  Google Scholar 

  10. Gu P, Dao M, Asaro R (1999) A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral. ASME J Appl Mech 66:101–108

    Article  Google Scholar 

  11. Hu K, Zhong Z, Jin B (2005) Anti-plane shear crack in a functionally gradient piezoelectric layer bonded to dissimilar half spaces. Int J Mech Sci 47:82–93

    Article  MATH  Google Scholar 

  12. John F (1955) Plane waves and spherical means applied to partial differential equations. Wiley International Science, New York

    MATH  Google Scholar 

  13. Keqiang H, Zheng Z, Bo J (2003) Electroelastic intensification near anti-plane crack in a functionally gradient piezoelectric ceramic strip. Acta Mech Solida Sinica 16(3):197–204

    Google Scholar 

  14. Kim JH, Paulino GH (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Meth Eng 53:1903–1935

    Article  MATH  Google Scholar 

  15. Kuna M (2006) Finite element analyses of cracks in piezoelectric structures: a survey. Arch Appl Mech 76:725–745

    Article  MATH  Google Scholar 

  16. Li C, Weng G (2002) Antiplane crack problem in functionally graded piezoelectric materials. J Appl Mech T ASME 69:481–488

    Article  MATH  Google Scholar 

  17. Ma L, Wu LZ, Zhou ZJ, Guo LC, Shi LP (2004) Scattering of the harmonic anti-plane share waves by two collinear cracks in functionally graded piezoelectric materials. Eur J Mech A Solids 23:633–643

    Article  MATH  Google Scholar 

  18. Ma L, Wu LZ, Zhou ZJ, Guo LC (2005) Scattering of the harmonic anti-plane share waves by a crack in functionally graded piezoelectric materials. Compos Struct 69:436–441

    Article  Google Scholar 

  19. Manolis G, Shaw R (1996) Green’s function for a vector wave equation in mildly heterogeneous continuum. Wave Motion 24:59–83

    Article  MATH  MathSciNet  Google Scholar 

  20. Manolis G, Dineva P, Rangelov T (2004) Wave scattering by cracks in inhomogeneous continua using BIEM. Int J Solids Struct 41:3905–3927

    Article  MATH  Google Scholar 

  21. Oztruk M, Erdogan F (1996) Axisymetric crack problem in bonded materials with a graded interfacial region. Int J Solids Struct 33:193–219

    Article  Google Scholar 

  22. Pan E, Amadei B (1999) Boundary element analysis of fracture mechanics in anisotropic bimaterials. Eng Anal Bound Elem 23:683–691

    Article  MATH  Google Scholar 

  23. Rangelov T, Dineva P (2007) Dynamic behaviour of a cracked inhomogeneous piezoelectric solid. Anti-plane case. C R Acad Bulg Sci 60(3):231–238

    Google Scholar 

  24. Rangelov T, Manolis G, Dineva P (2005) Elastodynamic fundamental solutions for 2 D inhomogeneous anisotropic domains: basic derivations. Eur J Mech A Solids 24:820–836

    Article  MATH  MathSciNet  Google Scholar 

  25. Rangelov T, Dineva P, Gross D (2008) Effect of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach. ZAMM-Z Angew Math Mech 88:86–99

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang BL (2003) A mode III crack in functionally graded piezoelectric materials. Mech Res Commun 30:151–159

    Article  MATH  Google Scholar 

  27. Wang XD, Meguid SA (2000b) Modelling and analysis of the dynamic behaviour of piezoelectric materials containing interfacing cracks. Mech Mater 32:723–737

    Article  Google Scholar 

  28. Yue ZQ, Xiao HT (2002) Generalized Kelvin solution based boundary element method for crack problems in multilayered solids. Eng Anal Bound Elem 26:691–705

    Article  MATH  Google Scholar 

  29. Zhang C, Savidis A, Zhu H (2001) A time domain BIEM for crack analysis in functionally graded materials under impact loading. In: Denda M, Aliabadi MH, Charafi A (eds) Advances in boundary element techniques II. Hoggar Press, Plan-les-Ouates, pp 405–415

    Google Scholar 

  30. Zhang C, Savidis A, Savidis G, Zhu H (2003) Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comput Mater Sci 26:167–174

    Article  Google Scholar 

  31. Zhang C, Sladek J, Sladek V (2003a) Effects of material gradients on transient dynamic mode- III stress intensity factors in a FGM. Int J Solids Struct 40:5251–5270

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsviatko Rangelov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dineva, P., Gross, D., Müller, R., Rangelov, T. (2014). Functionally Graded Piezoelectric Media with a Single Anti-plane Crack. In: Dynamic Fracture of Piezoelectric Materials. Solid Mechanics and Its Applications, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-319-03961-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03961-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03960-2

  • Online ISBN: 978-3-319-03961-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics