Skip to main content

In-plane Crack Problems in Functionally Graded Piezoelectric Solids

  • Chapter
  • First Online:
Dynamic Fracture of Piezoelectric Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 212))

  • 1785 Accesses

Abstract

In-plane crack analysis of functionally graded piezoelectric solids under time-harmonic loading is performed by using a non-hypersingular traction BIEM. The material parameters are assumed to vary quadratically with both spatial variables. Numerical results for the SIFs are discussed for different examples. Investigated are the effects of the inhomogeneity parameters, the frequency of the applied electromechanical load and the geometry of the crack scenario on the K-factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang WT, Clements DL, Vahdati N (2003) A dual-reciprocity boundary element method for a class of elliptic boundary value problems for non-homogeneous anisotropic media. Engng Anal Bound Elem 27:49–55

    Article  MATH  Google Scholar 

  2. Bykhovski AD, Gelmond BL, Shur MS (1997) Elastic strain relaxation and piezoeffect in Ga N- AIN, Ga N- Al Ga N and Ga N- In Ga N superlattices. Appl Phys 81(9):6332–6338

    Article  Google Scholar 

  3. Chen J, Liu ZX (2005) On the dynamic behavior of a functionally graded piezoelectric strip with periodic cracks vertical to the boundary. Int J Solids Struct 42:3133–3146

    Article  MATH  Google Scholar 

  4. Chen J, Liu ZX, Zou ZZ (2003a) The central crack problem for a functionally graded piezoelectric strip. Int J Fract 121:81–94

    Article  Google Scholar 

  5. Chen J, Liu ZX, Zou ZZ (2003b) Electromechanical impact of a crack in functionally graded piezoelectric medium. Theoret Appl Fract Mech 39:47–60

    Article  Google Scholar 

  6. Chirino F, Dominguez J (1989) Dynamic analysis of cracks using BEM. Engng Fract Mech 34:1051–1061

    Article  Google Scholar 

  7. Chue CH, Ou YL (2005) Mode III crack problems for two bonded functionally graded piezoelectric materials. Int J Solids Struct 42:3321–3337

    Article  MATH  Google Scholar 

  8. Dineva P, Rangelov T, Manolis G (2007) Elastic wave propagation in a class of cracked functionally graded materials by BIEM. Comput Mech 39:293–308

    Article  MATH  Google Scholar 

  9. Dineva P, Gross D, Müller R, Rangelov T (2010a) Time-harmonic crack problems in functionally graded piezoelectric solids via BIEM. Eng Fract Mech 77:73–91

    Article  Google Scholar 

  10. Ding SH, Li X (2008) Periodic cracks in functionally graded piezoelectric layer bonded to a piezoelectric half-plane. Theor Appl Fract Mech 49(3):313–320

    Article  Google Scholar 

  11. Garcia-Sanchez F, Saez A, Dominguez J (2004) Traction boundary elements for cracks in anisotropic solids. Engng Anal Bound Elem 28:667–676

    Article  Google Scholar 

  12. Garcia-Sanchez F, Saez A, Dominguez J (2006) Two-dimensional time-harmonic BEM for cracked anisotropic solids. Engng Anal Bound Elem 30:88–99

    Article  MATH  Google Scholar 

  13. Keqiang H, Zheng Z, Bo J (2003) Electroelastic intensification near anti-plane crack in a functionally gradient piezoelectric ceramic strip. Acta Mech Solida Sinica 16(3):197–204

    Google Scholar 

  14. Levinshtein ME, Rumyantsev SL, Shur MS (2001) Properties of advanced semiconductor materials GaN, AIN, InN, BN and SiGe. John Wiley and Sons, London

    Google Scholar 

  15. Li C, Weng G (2002) Antiplane crack problem in functionally graded piezoelectric materials. J Appl Mech T ASME 69:481–488

    Article  MATH  Google Scholar 

  16. Li C, Weng G (2002a) Antiplane crack problem in functionally graded piezoelectric materials. ASME. J Appl Mech 69:481–488

    Article  MATH  Google Scholar 

  17. Ma L, Wu LZ, Zhou ZJ, Guo LC, Shi LP (2004) Scattering of the harmonic anti-plane share waves by two collinear cracks in functionally graded piezoelectric materials. Europ J Mech /A Solids 23:633–643

    Article  MATH  Google Scholar 

  18. Ma L, Wu LZ, Zhou ZJ, Guo LC (2005) Scattering of the harmonic anti-plane share waves by a crack in functionally graded piezoelectric materials. Composite Str 69:436–441

    Article  Google Scholar 

  19. Manolis G, Shaw R (1996) Green’s function for a vector wave equation in mildly heterogeneous continuum. Wave Motion 24:59–83

    Article  MATH  MathSciNet  Google Scholar 

  20. Park S, Ang W (2000) A complex variable boundary element method for an elliptic partial differential equation with variable coefficients. Commun Numer Meth Eng 16:697–703

    Article  MATH  MathSciNet  Google Scholar 

  21. Rangelov T, Dineva P (2007a) Dynamic behaviour of a cracked inhomogeneous piezoelectric solid. In-plane case. Comptes Rendus Acad Bulg Sci 60(2), 141–148.

    Google Scholar 

  22. Rangelov T, Dineva P, Gross D (2008) Effect of material inhomogeneity on the dynamic behavior of cracked piezoelectric solids: a BIEM approach. ZAMM-Z Angew Math Mech 88:86–99

    Article  MATH  MathSciNet  Google Scholar 

  23. Sladek J, Sladek V, Zhang C (2005) A meshless local boundary integral equation method for dynamic anti-plane shear crack problem in functionally graded materials. Engng Anal Bound Elem 29:334–342

    Article  MATH  Google Scholar 

  24. Sladek J, Sladek V, Zhang C, Garcia-Sanchez F, Wunsche M (2006) Meshless local Petrov-Galerkin method for plane piezoelectricity. CMC: computers. Mater Continua 4:109–118

    Google Scholar 

  25. Sladek J, Sladek V, Zhang C, Solek P, Pan E (2007a) Evaluation of fracture parameters in continuously non-homogeneous piezoelectric solids. Int J Fract 145:313–326

    Article  MATH  Google Scholar 

  26. Sladek J, Sladek V, Zhang C, Solek P, Starek L (2007b) Fracture analysis in continuously nonhomogeneous piezoelectric solids by the MLPG. Comput Methods Eng Sci 19(3):247–262

    MATH  MathSciNet  Google Scholar 

  27. Sladek J, Sladek V, Zhang C (2007c) A local integral equation method for dynamic analysis in functionally graded piezoelectric materials. In: Minutoto V, Aliabadi MH (eds) Advances in boundary element technique VIII, pp 141–148

    Google Scholar 

  28. Ueda S (2003) Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theor Appl Fract Mech 40:325–336

    Google Scholar 

  29. Ueda S (2005a) Impact response of a functionally graded piezoelectric plate with a vertical crack. Theor Appl Fract Mech 44:239–342

    Article  Google Scholar 

  30. Ueda S (2005b) Electromechanical response of a cnter crack in a functionally graded piezoelectric strip. Smart Mater Struct 14:1133–1138

    Article  Google Scholar 

  31. Wang BL, Du SY, Han JC (1998) Dynamic fracture mechanics analysis for anti-plane cracks in non-homogeneous composite material. Acta Mater Comp Sinica 15(4):66–75

    Google Scholar 

  32. Wang CY, Zhang Ch (2005) 2 D and 3 D dynamic Green’s functions and time-domain BIE formulations for piezoelectric solids. Eng Anal Bound Elem 29:454–465

    Article  MATH  Google Scholar 

  33. Zhang C, Savidis A, Zhu H (2001) A time domain BIEM for crack analysis in functionally graded materials under impact loading. In: Denda M (ed) Advances in boumdary element techniques II, pp 405–412

    Google Scholar 

  34. Zhang C, Savidis A, Savidis G, Zhu H (2003) Transient dynamic analysis of a cracked functionally graded material by a BIEM. Comput Mater Sci 26:167–174

    Article  Google Scholar 

  35. Zhang C, Sladek J, Sladek V (2003b) Numerical analysis of cracked functionally graded materials. Key Eng Mater 251(252):463–471

    Article  Google Scholar 

  36. Zhang C, Sladek J, Sladek V (2004) Crack analysis in unidirectionally and bidimensionally functionally graded materials. Int J Fract 129:385–406

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsviatko Rangelov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dineva, P., Gross, D., Müller, R., Rangelov, T. (2014). In-plane Crack Problems in Functionally Graded Piezoelectric Solids. In: Dynamic Fracture of Piezoelectric Materials. Solid Mechanics and Its Applications, vol 212. Springer, Cham. https://doi.org/10.1007/978-3-319-03961-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03961-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03960-2

  • Online ISBN: 978-3-319-03961-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics