Skip to main content

High-Level Analysis of Fully Digital PWM Transmitters

  • Chapter
  • First Online:
Book cover Continuous-Time Digital Front-Ends for Multistandard Wireless Transmission

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1382 Accesses

Abstract

Digital transmitters approximate the ideal analog signals by digital signals, which introduces many nonidealities. On one hand, this results in noise and distortion in the signal band, which deteriorates the signal quality. On the other hand, it results in distortion peaks outside the signal band, which may interfere with signals in different communication bands. Both in-band and out-of-band nonidealities are governed by fairly complex effects that depend on a number of parameters. Understanding these effects is crucial in order to efficiently explore the design space and implement performant transmitter architectures. In order to speed up the design process, it would be practical if these nonidealities can not only be understood but also predicted. For certain effects, this can be done using analytical approximations. For other, more complex effects, simulations are still needed. This chapter gives a theoretical high-level analysis of the nonidealities that occur in different types of digital PWM-based transmitters and their effects on the output spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The derivations in both [15] and [5] assume a sampling rate \(T_s\) and a pulse width \(T \le T_s \) for each sample. The sample-and-hold operation considered here holds each sampled value for a complete sampling period, so that in this work, \(T = T_s \).

  2. 2.

    In [14], the expressions are written in terms of \(a(t)\) and \(y(t)\), which are defined as \((b(t)+ 1)/2\) and \((b_\mathrm{{NDP}}(t)+ 1)/2\), respectively.

  3. 3.

    The PA is often not reconfigurable either, but it mostly has a much higher bandwidth so it can cover a major part of the frequency range of the digital transmitter. This wideband nature is exactly the reason why an extra band pass filter is required.

  4. 4.

    In practical implementations, \(f_c \) cannot be optimized since it is fixed by the standard. The word “optimal” just indicates the frequency where the best EVM can be achieved.

References

  1. Bennett WR (1948) Spectra of quantized signals. Bell Syst Tech J 27(3):446–472

    Google Scholar 

  2. Chen JH, Yang HS, Chen YJE (2010) A multi-level pulse modulated transmitter using digital pulse-width modulation. IEEE Microw Wirel Compon Lett 50(5):295–297

    Google Scholar 

  3. Chi S, Vogel C, Singerl P (2010) The frequency spectrum of polar modulated PWM signals and the image problem. In: IEEE international conference on electronics, circuits and systems (ICECS), pp 679–682

    Google Scholar 

  4. Chi S, Singerl P, Vogel C (2011) Coding efficiency optimization for multilevel PWM based switched-mode RF transmitters. In: IEEE midwest symposium on circuits and systems (MWSCAS), pp 1–4

    Google Scholar 

  5. Couch LW II (2001) Digital and analog communication systems, 6th edn. Prentice-Hall, Upper Saddle River. ISBN: 0-13-089630-6

    Google Scholar 

  6. François B, Reynaert P (2011) A fully integrated CMOS power amplifier for LTE-applications using clover shaped DAT. In: IEEE European solid-state circuits conference (ESSCIRC), pp 303–306

    Google Scholar 

  7. François B, Reynaert P (2012) A fully integrated watt-level linear 900 MHz CMOS RF power amplifier for LTE-applications. IEEE Trans Microw Theory Tech 60(6):1878–1885

    Google Scholar 

  8. François B, Reynaert P, Wiesbauer A, Singerl P (2010) Analysis of burst-mode RF PA with direct filter connection. In: IEEE European microwave conference (EuMC), pp 974–977

    Google Scholar 

  9. François B, Singerl P, Wiesbauer A, Reynaert P (2011) Efficiency and linearity analysis of a burst mode RF PA with direct filter connection. Int J Microw Wirel Technol 3(3):329–338

    Google Scholar 

  10. François B, Nuyts PAJ, Dehaene W, Reynaert P (2013) Extending dynamic range of RF PWM transmitters. IET Electron Lett 49(6):430–432

    Google Scholar 

  11. Fritzin J, Svensson C, Alvandpour A (2011) A +32 dBm 1.85 GHz class-D outphasing RF PA in 130 nm CMOS for WCDMA/LTE. In: IEEE European solid-state circuits conference (ESSCIRC), pp 127–130

    Google Scholar 

  12. Goldberg JM, Sandler MB (1991) Pseudo-natural pulse width modulation for high accuracy digital-to-analogue conversion. IEE Electron Lett 27(16):1491–1492. doi:10.1049/el:19910933

  13. Goldberg JM, Sandler MB (1994) New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier. Proc IEE Circuits Devices Syst 141(4):315–324

    Google Scholar 

  14. Hausmair K, Chi S, Singerl P, Vogel C (2013) Aliasing-free digital pulse-width modulation for burst-mode RF transmitters. IEEE Trans Circuits Syst I Regul Pap 60(2):415–427

    Google Scholar 

  15. Haykin S (1994) Communication systems, 3rd edn. Wiley, New York. ISBN: 0-471-57176-8

    Google Scholar 

  16. Kaymaksüt E, Reynaert P (2012) Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications. IEEE J Solid-State Circuits 47(7):1659–1671

    Google Scholar 

  17. Kodera T, Ando N, Taromaru M (2007) A basic study on EER transmitter with burst-width envelope modulation based on triangle-wave PWM. In: Korea-Japan microwave conference, pp 1–4

    Google Scholar 

  18. Kretzmer ER (1947) Distortion in pulse-duration modulation. Proc IRE 35(11):1230–1235

    Google Scholar 

  19. Mahmoud HA, Arslan H (2009) Error vector magnitude to SNR conversion for nondata-aided receivers. IEEE Trans Wirel Commun 8(5):2694–2704

    Google Scholar 

  20. Matějka Š (2010) Performance of interpolation algorithms for PWM driven power amplifiers. In: International conference radioelektronika, pp 1–4

    Google Scholar 

  21. Nassery A, Ozev S, Verhelst M, Slamani M (2011) Extraction of EVM from transmitter system parameters. In: IEEE European test symposium (ETS), pp 75–80

    Google Scholar 

  22. Nuyts PAJ, François B, Dehaene W, Reynaert P (2012) A CMOS burst-mode transmitter with watt-level RF PA and flexible fully digital front-end. IEEE Trans Circuits Syst II Express Briefs 59(10):613–617

    Google Scholar 

  23. Nuyts PAJ, Singerl P, Dielacher F, Reynaert P, Dehaene W (2012) A fully digital delay line based GHz range multimode transmitter front-end in 65-nm CMOS. IEEE J Solid-State Circuits 47(7):1681–1692

    Google Scholar 

  24. Nuyts PAJ, Reynaert P, Dehaene W (2013) Frequency-domain analysis of digital PWM-based RF modulators for flexible wireless transmitters. IEEE Trans Circuits Syst I Regul Pap. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6525505

  25. Park M, Perrott MH, Staszewski RB (2011) An amplitude resolution improvement of an RF-DAC employing pulsewidth modulation. IEEE Trans Circuits Syst I Regul Pap 58(11):2590–2603

    Google Scholar 

  26. Pascual C, Song Z, Krein PT, Sarwate DV, Midya P, Roecker WJ (2003) High-fidelity PWM inverter for digital audio amplification: Spectral analysis, real-time DSP implementation, and results. IEEE Trans Power Electron 18(1):473–485

    Google Scholar 

  27. Raab FH, Asbeck P, Cripps S, Kenington PB, Popovich ZB, Pothecary N, Sevic JF, Sokal NO (2004) RF and microwave power amplifier and transmitter technologies—Part 5. High-Frequency Electron 3(1):46–54

    Google Scholar 

  28. Ravi A, Madoglio P, Verhelst M, Sajadieh M, Aguirre M, Xu H, Pellerano S, Lomeli I, Zarate J, Cuellar L, Degani O, Lakdawala H, Soumyanath K, Palaskas Y (2011) A 2.5 GHz delay-based wideband OFDM outphasing modulator in 45 nm-LP CMOS. In: IEEE symposium on VLSI circuits (VLSIC), pp 26–27

    Google Scholar 

  29. Reynaert P, Steyaert M (2006) RF power amplifiers for mobile communications. Springer, New York. ISBN: 978-1-4020-5116-6

    Google Scholar 

  30. Reynaert P, François B, Kaymaksüt E (2009) CMOS RF PA design: using complexity to solve the linearity and efficiency trade-off. In: IEEE international symposium on radio-frequency integration technology (RFIT), pp 207–212

    Google Scholar 

  31. Santi S, Rovatti R, Setti G (2004) Spectral aliasing effects of PWM signals with time-quantized switching instants. In: IEEE international symposium on circuits and systems (ISCAS), vol 4, pp 689–692

    Google Scholar 

  32. Song Z, Sarwate DV (2003) The frequency spectrum of pulse width modulated signals. Elsevier Signal Process 83(10):2227–2258. http://dx.doi.org/10.1016/S0165-1684(03)00164-6

  33. Tai W, Xu H, Ravi A, Lakdawala H, Bochobza-Degani O, Carley LR, Palaskas Y (2012) A transformer-combined 31.5 dBm outphasing power amplifier in 45 nm LP CMOS with dynamic power control for back-off power efficiency enhancement. IEEE J Solid-State Circuits 47(7):1646–1658

    Google Scholar 

  34. Taromaru M, Ando N, Kodera T, Yano K (2007) An EER transmitter architecture with burst-width envelope modulation based on triangle-wave comparison PWM. In: IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), pp 1–5

    Google Scholar 

  35. Walling JS, Lakdawala H, Palaskas Y, Ravi A, Degani O, Soumyanath K, Allstot DJ (2009) A class-E PA with pulse-width and pulse-position modulation in 65nm CMOS. IEEE J Solid-State Circuits 44(6):1668–1678

    Google Scholar 

  36. Wikipedia. Binomial theorem. http://en.wikipedia.org/wiki/Binomial_theorem

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter A. J. Nuyts .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nuyts, P.A.J., Reynaert, P., Dehaene, W. (2014). High-Level Analysis of Fully Digital PWM Transmitters. In: Continuous-Time Digital Front-Ends for Multistandard Wireless Transmission. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-03925-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03925-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03924-4

  • Online ISBN: 978-3-319-03925-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics