Supporting Computer-interpretable Guidelines’ Modeling by Automatically Classifying Clinical Actions

  • Anne-Lyse Minard
  • Katharina Kaiser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8268)


Modeling computer-interpretable clinical practice guidelines is a complex and tedious task that has been of interest for several attempts to automate parts of this process. When modeling guidelines one of the tasks is to specify common actions in everyday’s practical medicine (e.g., drug prescription, observation) in order to link them with clinical information systems (e.g., an order-entry system). In this paper we compare a rule-based and a machine-learning method to classify activities according to the Clinical Actions Palette used in the Hybrid-Asbru ontology. We use syntactic and semantic features, such as the Semantic Types of the UMLS to classify the activities. Furthermore, we extend our methods by using 2-step classification and combining machine learning and rule-based approaches. Results show that machine learning performs better than the rule-based method on the classification task. They also show that the 2-step classification method improves the categorization of activities.


Clinical Practice Guidelines Hybrid-Asbru Common Clinical Actions Natural Language Processing Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Diabetes Association: Standards of medical care in diabetes–2011. Diabetes Care 34(suppl. 1), S11–S61 (2011)Google Scholar
  2. 2.
    Aronson, A.R., Lang, F.M.: An overview of metamap: historical perspective and recent advances. J. Am. Med. Inform. Assoc. 17, 229–236 (2010)Google Scholar
  3. 3.
    Bouffier, A., Poibeau, T.: Analyzing the Scope of Conditions in Texts: A Discourse-Based Approach. In: Proceedings of the 11th Conference of the Pacific Association for Computational Linguistics, Sapporo, France (2009)Google Scholar
  4. 4.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)Google Scholar
  5. 5.
    Chung, G.Y., Coiera, E.: A study of structured clinical abstracts and the semantic classification of sentences. In: Proc. of the BioNLP Workshop 2007: Biological, Translational, and Clinical Language Processing (BioNLP 2007). Association for Computational Linguistics (ACL), Stroudsburg (2007)Google Scholar
  6. 6.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proceedings of the 40th Anniversary Meeting of the ACL (ACL 2002) (2002)Google Scholar
  7. 7.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M.A., Saggion, H., Petrak, J., Li, Y., Peters, W.: Text Processing with GATE (Version 6) (2011)Google Scholar
  8. 8.
    Essaihi, A., Michel, G., Shiffman, R.N.: Comprehensive categorization of guideline recommendations: Creating an action palette for implementers. In: AMIA 2003 Symposium Proceedings, pp. 220–224. AMIA (2003)Google Scholar
  9. 9.
    Field, M.J., Lohr, K.N. (eds.): Clinical Practice Guidelines: Directions for a New Program. National Academies Press, Institute of Medicine, Washington, DC (1990)Google Scholar
  10. 10.
    Fuster, V., Rydén, L.E., Cannom, D.S., et al.: ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 123(10), e269–e367 (2011)Google Scholar
  11. 11.
    Gooch, P.: A modular, open-source information extraction framework for identifying clinical concepts and processes of care in clinical narratives. Ph.D. thesis, Centre for Health Informatics, School of Informatics, City University London (2012)Google Scholar
  12. 12.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  13. 13.
    Kaiser, K., Akkaya, C., Miksch, S.: How can information extraction ease formalizing treatment processes in clinical practice guidelines? A method and its evaluation. Artificial Intelligence in Medicine 39(2), 151–163 (2007)CrossRefGoogle Scholar
  14. 14.
    Kaiser, K., Seyfang, A., Miksch, S.: Identifying treatment activities for modelling computer-interpretable clinical practice guidelines. In: Riaño, D., ten Teije, A., Miksch, S., Peleg, M. (eds.) KR4HC 2010. LNCS, vol. 6512, pp. 114–125. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Kang, N., van Mulligen, E.M., Kors, J.A.: Comparing and combining chunkers of biomedical text. Journal of Biomedical Informatics 44(2), 354–360 (2011)CrossRefGoogle Scholar
  16. 16.
    Khoo, A., Marom, Y., Albrecht, D.: Experiments with sentence classification. In: Proccedings of the 2006 Australasian Language Technology Workshop (ALTW 2006), pp. 18–25 (2006)Google Scholar
  17. 17.
    Kim, S.N., Martinez, D., Cavedon, L., Yencken, L.: Automatic classification of sentences to support evidence based medicine. BMC Bioinformatics 12(suppl. 2), S5 (2011)Google Scholar
  18. 18.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.A.: A large-scale classification of English verbs. Language Resources and Evaluation 42(1), 21–40 (2008)CrossRefGoogle Scholar
  19. 19.
    Lindberg, D., Humphreys, B.L., McCray, A.T.: The unified medical language system. Methods of Information in Medicine 32(4), 281–291 (1993)Google Scholar
  20. 20.
    McCray, A.: An upper-level ontology for the biomedical domain. Comp. Funct. Genomics 4(1), 80–84 (2003)CrossRefGoogle Scholar
  21. 21.
    McKnight, L., Srinivasan, P.: Categorization of sentence types in medical abstracts. In: Proc. of the AMIA Annual Symposium, pp. 440–444 (2003)Google Scholar
  22. 22.
    Pestian, J.P., Matykiewicz, P., Linn-Gust, M., South, B., Uzuner, O., Wiebe, J., Cohen, K.B., Hurdle, J., Brew, C.: Sentiment analysis of suicide notes: A shared task. Biomedical Informatics Insights 5, 3–16 (2012)CrossRefGoogle Scholar
  23. 23.
    Quaglini, S.: Compliance with clinical practice guidelines. In: ten Teije, A., Miksch, S., Lucas, P.J. (eds.) Computer-based Medical Guidelines and Protocols: A Primer and Current Trends, Studies in Health Technology and Informatics, ch. 9, vol. 139, pp. 160–179. IOS Press (2008)Google Scholar
  24. 24.
    Schadow, G., Russler, D.C., Mead, C.N., McDonald, C.J.: Integrating medical information and knowledge in the HL7 RIM. In: Proceedings of the AMIA Annual Symposium, pp. 764–748 (January 2000)Google Scholar
  25. 25.
    Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: A task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine 14, 29–51 (1998)CrossRefGoogle Scholar
  26. 26.
    Song, M., Kim, S., Park, D., Lee, Y.: A multi-classifier based guideline sentence classification system. Healthc. Inform. Res. 17(4), 224–231 (2011)CrossRefGoogle Scholar
  27. 27.
    Young, O., Shahar, Y., Liel, Y., Lunenfeld, E., Bar, G., Shalom, E., Martins, S.B., Vaszar, L.T., Marom, T., Goldstein, M.K.: Runtime application of Hybrid-Asbru clinical guidelines. Journal of Biomedical Informatics 40, 507–526 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anne-Lyse Minard
    • 1
  • Katharina Kaiser
    • 1
  1. 1.Institute of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria

Personalised recommendations