Advertisement

GLM-CDS: A Standards-Based Verifiable Guideline Model for Decision Support in Clinical Applications

  • Marco Iannaccone
  • Massimo Esposito
  • Giuseppe De Pietro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8268)

Abstract

In the last years, many parties have been engaged in developing models for encoding clinical practice guidelines in a computer-interpretable form. Despite the attempts involved to specify and adopt a single, common model, to date, there is no de facto standard solution. Moreover, the effort in defining new models has not been coupled by a parallel effort in supporting a seamless integration with the clinical workflow and existing health information systems. In such a direction, this paper proposes a standards-based verifiable guideline model, named GLM-CDS (GuideLine Model for Clinical Decision Support), whose main features can be summarized in the following points: i) its control-flow model is a formal Task-Network Model devised to represent guidelines on multiple levels of abstraction by focusing only on issues pertaining the clinical decision support; ii) its information model is expressly built on the top of the simplified patient information model standardized as HL7 Virtual Medical Record for Clinical Decision Support; iii) its terminological model is essentially constructed on the top of standard medical terminologies; iv) its computer-interpretable encoding is built in terms of both a formal, semantically well-defined and verifiable ontology for describing control-flow and information models, and a logical rule formalism for specifying decision criteria.

Keywords

Clinical Practice Guidelines Decision Support Systems Workflow Management Ontology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Institute of Medicine, Crossing the Quality Chasm: A New Health System for the 21st Century. National Academy Press, Washington (2001)Google Scholar
  2. 2.
    Field, M.J., Lohr, K.N.: Guidelines for Clinical Practice: From Development to Use. Institute of Medicine, National Academy Press, Washington, DC (1992)Google Scholar
  3. 3.
    Sonnenberg, F.A., Hagerty, C.G.: Computer-interpretable clinical practice guidelines: Where are we and where are we going? In: Kulikowski, C., Haux, R. (eds.) IMIA Yearbook of Medical Informatics (2006); Methods Inf. Med. 45(suppl. 1), 145–158 (2006).Google Scholar
  4. 4.
    De Clercq, P., Kaiser, K., Hasman, A.: Computer-Interpretable Guideline formalisms. Stud. Health. Technol. Inform. 139, 22–43 (2008)Google Scholar
  5. 5.
    Minutolo, A., Sannino, G., Esposito, M., De Pietro, G.: A rule-based mHealth system for cardiac monitoring. In: 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences, pp. 144–149 (2010)Google Scholar
  6. 6.
    Mulyar, N., van der Aalst, W.M.P., Peleg, M.: A Pattern-based Analysis of Clinical Computer-interpretable Guideline Modeling Languages. J. Am. Med. Inform. Assoc. 14(6), 781–787 (2007)CrossRefGoogle Scholar
  7. 7.
    Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med. Inform. 77, 787–808 (2008)CrossRefGoogle Scholar
  8. 8.
    Tu, S.W., Musen, M.A., Shankar, R., Campbell, J., Hrabak, K., McClay, J., Huff, S.M., McClure, R., Parker, C., Rocha, R., Abarbanel, R., Beard, N., Glasgow, J., Mansfield, G., Ram, P., Ye, Q., Mays, E., Weida, T., Chute, C.G., McDonald, K., Molu, D., Nyman, M.A., Scheitel, S., Solbrig, H., Zill, D.A., Goldstein, M.K.: Modeling guidelines for integration into clinical workflow. Stud. Health Technol. Inform. 107(pt. 1), 174–178 (2004)Google Scholar
  9. 9.
    Peleg, M., Keren, S., Denekamp, Y.: Mapping computerized clinical guidelines to electronic medical records: Knowledge-data ontological mapper (KDOM). Journal of Biomedical Informatics 41(1), 180–201 (2008)CrossRefGoogle Scholar
  10. 10.
    Health Level 7. HL7 Virtual Medical Record Project Wiki (vMR), http://wiki.hl7.org/index.php?title=Virtual_Medical_Record_vMR
  11. 11.
    Tu, S.W., Campbell, J.R., Glasgow, J., Nyman, M.A., McClure, R., McClay, J., Parker, C., Hrabak, K.M., Berg, D., Weida, T., Mansfield, J.G., Musen, M.A., Abarbanel, R.M.: The SAGE Guideline Model: Achievements and Overview. J. Am. Med. Inform. Assoc. 14, 589–598 (2007)CrossRefGoogle Scholar
  12. 12.
    Boxwala, A.A., Peleg, M., Tu, S., Ogunyemi, O., Zeng, Q.T., Wang, D., Patel, V.L., Greenes, R.A., Shortliffe, E.H.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J. Biomed. Inform. 37(3), 147–161 (2004)CrossRefGoogle Scholar
  13. 13.
    Seyfang, A., Miksch, S., Marcos, M.: Combining diagnosis and treatment using Asbru. Int. J. Med. Informat. 68(1-3), 49–57 (2002)CrossRefGoogle Scholar
  14. 14.
    Tu, S.W., Musen, M.A.: Modeling data and knowledge in the EON guideline architecture. Stud. Health. Technol. Inform. 84(pt. 1), 280–284 (2001)Google Scholar
  15. 15.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma approach. Artif. Intell. Med. 14, 157–181 (1998)CrossRefGoogle Scholar
  16. 16.
    Johnson, P.D., Tu, S.W., Musen, M.A., Purves, I.: A virtual medical record for guideline-based decision support. In: AMIA Annu. Symp. Proc., pp. 294–298 (2001)Google Scholar
  17. 17.
    Health Level 7. HL7 Reference Information Model, Version 3, http://www.hl7.org/implement/standards/rim.cfm
  18. 18.
    González-Ferrer, A., Peleg, M., Verhees, B., Verlinden, J.M., Marcos, C.: Data Integration for Clinical Decision Support Based on openEHR Archetypes and HL7 Virtual Medical Record. In: Process Support and Knowledge Represent. in Health Care, pp. 71–84 (2013)Google Scholar
  19. 19.
    Open Clinical Decision Support Tools and Resources, http://www.opencds.org
  20. 20.
    Health Level 7. HL7 Version 3 Standard: Gello: A Common Expression Language, Release 2, http://wiki.hl7.org/index.php?title=Product_GELLO
  21. 21.
    Colantonio, S., Esposito, M., Martinelli, M., De Pietro, G., Salvetti, O.: A Knowledge Editing Service for Multisource Data Management in Remote Health Monitoring. IEEE Trans. Inf. Technol. Biomed. 16(6), 1096–1104 (2012)CrossRefGoogle Scholar
  22. 22.
    Regenstrief Institute, Inc. and the LOINC Committee. Logical Observation Identifiers Names and Codes (LOINC), http://loinc.org/
  23. 23.
    International Health Terminology Standards Development Organisation. Systematized Nomenclature of Medicine (SNOMED), http://www.ihtsdo.org/snomed-ct/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marco Iannaccone
    • 1
  • Massimo Esposito
    • 1
  • Giuseppe De Pietro
    • 1
  1. 1.National Research Council of ItalyInstitute for High Performance Computing and Networking (ICAR)NaplesItaly

Personalised recommendations