iALARM: An Intelligent Alert Language for Activation, Response, and Monitoring of Medical Alerts

  • Denis Klimov
  • Yuval Shahar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8268)


Management of alerts triggered by unexpected or hazardous changes in a patient’s state is a key task in continuous monitoring of patients. Using domain knowledge enables us to specify more sophisticated triggering patterns for alerts, based on temporal patterns detected in a stream of patient data, which include both the temporal element and significant domain knowledge, such as "rapidly increasing fever" instead of monitoring of only raw vital signals, such as "temperature higher than 39 C". In the current study, we introduce iALARM, a two-tier computational architecture, accompanied by a language for specification of intelligent alerts, which represents an additional computational [meta] level above the temporal-abstraction level. Alerts in the iALARM language consist of (a) the target population part (Who is to be monitored?); (b) a declarative part (What is the triggering pattern?), i.e., a set of time and value constraints, specifying the triggering pattern to be computed by the bottom tier; and (c) a procedural part (How should we raise the alarm? How should we continue the monitoring and follow-up?), i.e., an action or a whole plan to apply when the alert is triggered, and a list of meta-properties of the alert and action. One of our underlying principles is to avoid alert fatigue as much as possible; for instance, one can specify that a certain alert should be activated only the first time that the triggering pattern is detected, or only if it has not been raised over the past hour. Thus, we introduce a complete life cycle for alerts. Finally, we discuss the implied requirements for the knowledge- acquisition tool and for the alert monitoring and procedural application engines to support the iALARM language. We intend to evaluate our architecture in several clinical domains, within a large project for remote patient monitoring.


Alert Monitoring Knowledge representation Temporal abstraction Temporal reasoning Medical informatics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    vom Brocke, J., Rosemann, M.: Handbook on Business Process Management-I:Introduction, Methods, and Information Systems. International Handbooks on Information Systems. Springer (2010)Google Scholar
  2. 2.
    Curtis, D.W., Pino, E.J., Bailey, J.M., Shih, E.I., Waterman, J., Vinterbo, S.A., Stair, T.O., Guttag, J.V., Greenes, R.A., Ohno-Machado, L.: SMART–an integrated wireless system for monitoring unattended patients. J. Am. Med. Inform. Assoc. 15(1), 44–53 (2008)CrossRefGoogle Scholar
  3. 3.
    Chipara, O., Brooks, C., Bhattacharya, S., Lu, C., Chamberlain, R., Roman, G.-C., Bailey, T.C.: Reliable real-time clinical monitoring using sensor network technology. In: Proceedings of AMIA (2009)Google Scholar
  4. 4.
    2013 Best Medical Alert Service Comparisons and Reviews,
  5. 5.
    Kowalczyk, L.: Patient alarms often unheard, unheeded. The Boston Globe (February 13, 2011),
  6. 6.
    Centers for Disease Control (CDC) and Prevention. National Healthcare Safety Network. Guidelines and procedures for monitoring VAP (March 2009),
  7. 7.
    Rooney, Z., Nadel, S.: Optimizing intensive care management in paediatric sepsis. Curr. Opin. Infect. Dis. 22(3), 264–271 (2009)CrossRefGoogle Scholar
  8. 8.
    Mora, F., Passarielllo, G., Carrault, G., Le Pichon, J.P.: Intelligent patient monitoring and Management Systems: A review. IEEE Eng. Med., Biol. Mag. 12, 23–33 (1993)CrossRefGoogle Scholar
  9. 9.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1-2), 79–133 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Boaz, D., Shahar, Y.: A distributed temporal-abstraction mediation architecture for medical databases. Artificial Intelligence in Medicine 34(1), 3–24 (2005)CrossRefGoogle Scholar
  11. 11.
    Spokoiny, A., Shahar, Y.: An active database architecture for knowledge-based incremental abstraction of complex concepts from continuously arriving time-oriented raw data. Journal of Intelligent Information Systems 28(3), 199–231 (2007)CrossRefGoogle Scholar
  12. 12.
    Hatsek, A., Shahar, Y., Taieb-Maimon, M., Shalom, E., Klimov, D., Lunenfeld, E.: A scalable architecture for incremental specification and maintenance of procedural decision-support knowledge. The Open Medical Informatics Journal 4, 255–277 (2010)CrossRefGoogle Scholar
  13. 13.
    Stacey, M., Mcgregor, C.: Temporal abstraction in intelligent clinical data analysis: A survey. Artificial Intelligence in Medicine 39, 1–24 (2007)CrossRefGoogle Scholar
  14. 14.
    Shahar, Y., Musen, M.A.: Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine 8(3), 267–298 (1996)CrossRefGoogle Scholar
  15. 15.
    Silvent, A.-S., Dojat, M., Garbay, C.: Multi-level temporal abstraction for medical scenario construction. Int. J. Adapt. Control 19, 377–394 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Miksch, S., Horn, W., Popow, C., Paky, F.: Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants. Artif. Intell. Med. 8, 543–576 (1996)CrossRefGoogle Scholar
  17. 17.
    Combi, C., Chittaro, L.: Abstraction on clinical data sequences: an object-oriented data model and a query language based on the event calculus. Art. Intell. Med. 17, 271–301 (1999)CrossRefGoogle Scholar
  18. 18.
    Etzion, O.: Temporal Perspectives in Event Processing. Principles and Applications of Distributed Event-Based Systems, pp. 75–89 (2010)Google Scholar
  19. 19.
    Rete, F.C.: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial Intelligence 19, 17–37 (1982)CrossRefGoogle Scholar
  20. 20.
    Alferes, J., Banti, F., Brogi, A.: An event-condition-action logic programming language. In: Proc. of the 10th European Conference on Logics in Artificial Intelligence, UK (2006)Google Scholar
  21. 21.
    Dube, K., Wu, B., Grimson, J.B.: Using ECA Rules in Database Systems to Support Clinical Protocols. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 226–235. Springer, Heidelberg (2002)Google Scholar
  22. 22.
    Greiner, U., Ramsch, J., Heller, B., Löffler, M., Müller, R., Rahm, E.: Adaptive Guideline-based Treatment Workflows with AdaptFlow. In: Kaiser, K., Miksch, S., Tu, S.W. (eds.) Proceedings of the Symposium on Computerized Guidelines and Protocols (CGP 2004), Computer-Based Support for Clinical Guidelines and Protocols, pp. 113–117. IOS Press (2004)Google Scholar
  23. 23.
    Mansour, E., Wu, B., Dube, K., Li, J.: An Event-Driven Approach to Computerizing Clinical Guidelines Using XML. In: Proceedings of the IEEE Services Computing Workshops, September 18-22, pp. 13–20 (2006)Google Scholar
  24. 24.
    Mouttham, A., Peyton, L., Eze, B., Saddik, A.: Event-Driven Data Integration for Personal Health Monitoring. Journal of Emerging Technologies in Web Intelligence 1 (2009)Google Scholar
  25. 25.
    Kuperman, G.J., Bobb, A., Payne, T.H., et al.: Medication-related clinical decision support in computerized provider order entry systems: A review. J. Am. Med. Inform. Assoc. 14(1), 29–40 (2007)CrossRefGoogle Scholar
  26. 26.
    McCoy, A.B., Waitman, L.R., Lewis, J.B., Wright, J.A., Choma, D.P., Miller, R.A., et al.: A framework for evaluating the appropriateness of clinical decision support alerts and responses. JAMIA (2011)Google Scholar
  27. 27.
    Schedlebauer, A., Prasad, V., Mulvaney, C., Phansalkar, S., Stanton, W., Bates, D.W., Avery, A.J.: What evidence supports the use of computerized alerts and prompts to improve clinicians’ prescribing behavior? JAMIA 13, 531–538 (2009)CrossRefGoogle Scholar
  28. 28.
    Lee, E.K., Mejia, A.F., Senior, T., et al.: Improving patient safety through medical alert management: an automated decision tool to reduce alert fatigue. In: AMIA Annu. Symp. Proc., pp. 417–421 (2010)Google Scholar
  29. 29.
    Chakravarty, S., Shahar, Y.: A constraint-based specification of periodic patterns in time-oriented data. Annals of Mathematics and Artificial Intelligence 30(1-4) (2000)Google Scholar
  30. 30.
    Chakravarty, S., Shahar, Y.: Specification and detection of periodicity in clinical data. Methods of Information in Medicine 40(5), 296–306 (2001); Reprinted in: Haux, R., and Kulikowski, C. (eds.): Yearbook of Medical Informatics 2003, pp. 296–306. F.K. Schattauer and The International Medical Informatics Association, Stuttgart (2001)Google Scholar
  31. 31.
    Shahar, Y., Young, O., Shalom, E., Mayaffit, A., Moskovitch, R., Hessing, A., Galperin, M.: A hybrid, multiple-ontology framework for specification and retrieval of clinical guidelines. The Journal of Biomedical Informatics 37(5), 325–344 (2004)CrossRefGoogle Scholar
  32. 32.
    Shalom, E., Fridman, I., Shahar, Y., Hatsek, A., Lunenfeld, E.: Towards a realistic clinical-guidelines application framework: Desiderata, Applications, and lessons learned. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012 and KR4HC 2012. LNCS, vol. 7738, pp. 56–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Hudson, D.: Design of the intensive care unit from a monitoring point of view. Respir Care V 30, 549–559 (1985)Google Scholar
  34. 34.
    MobiGuide: Guiding patients anytime everywhere,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Denis Klimov
    • 1
  • Yuval Shahar
    • 1
  1. 1.Medical Informatics Research Center, Department of Information System EngineeringBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations