Skip to main content

A Faster FPT Algorithm for Bipartite Contraction

  • Conference paper
Parameterized and Exact Computation (IPEC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Included in the following conference series:

Abstract

The Bipartite Contraction problem is to decide, given a graph G and a parameter k, whether we can can obtain a bipartite graph from G by at most k edge contractions. The fixed-parameter tractability of the problem was shown by Heggernes et al. [13], with an algorithm whose running time has double-exponential dependence on k. We present a new randomized FPT algorithm for the problem, which is both conceptually simpler and achieves an improved \(2^{O(k^2)} n m\) running time, i.e., avoiding the double-exponential dependence on k. The algorithm can be derandomized using standard techniques.

Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized complexity and the search for tight complexity results,” reference 280152 and OTKA grant NK105645.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. CoRR, abs/1211.5933 (2012), Accepted to SODA 2014

    Google Scholar 

  3. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)

    Google Scholar 

  6. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. SIAM Journal of Computing 42(4), 1674–1696 (2013), http://arxiv.org/abs/1110.0259

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Pilipczuk, M., Pilipczuk, M.: On Group Feedback Vertex Set Parameterized by the Size of the Cutset. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 194–205. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Dehne, F.K., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT algorithm for the undirected feedback vertex set problem. Theor. Comput. Syst. 41(3), 479–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golovach, P.A., van ’t Hof, P., Paulusma, D.: Obtaining Planarity by Contracting Few Edges. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 455–466. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Guillemot, S.: FPT algorithms for path-transversals and cycle-transversals problems. Discrete Optimization 8(1), 61–71 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)

    Article  MATH  Google Scholar 

  12. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting Graphs to Paths and Trees. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 55–66. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a Bipartite Graph by Contracting Few Edges. In: FSTTCS 2011, pp. 217–228 (2011)

    Google Scholar 

  14. Iwata, Y., Oka, K., Yoshida, Y.: Linear-time FPT algorithms via network flow. CoRR, abs/1307.4927 (2013), Accepted to SODA 2014

    Google Scholar 

  15. Kawarabayashi, K., Reed, B.A.: An (almost) Linear Time Algorithm for Odd Cycle Transversal. In: SODA 2010, pp. 365–378 (2010)

    Google Scholar 

  16. Kratsch, S., Wahlström, M.: Compression via Matroids: a Randomized Polynomial Kernel for Odd Cycle Transversal. In: SODA 2012, pp. 94–103 (2012)

    Google Scholar 

  17. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: New tools for kernelization. In: FOCS 2012, pp. 450–459 (2012)

    Google Scholar 

  18. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler Parameterized Algorithm for OCT. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 380–384. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Marx, D.: Parameterized graph separation problems. Theoretical Computer Science 351(3), 394–406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via treewidth reduction. ACM Transactions on Algorithms 9(4) (2013)

    Google Scholar 

  22. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorithmica 62(3–4), 807–822 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS 1995, pp. 182–191 (1995)

    Google Scholar 

  24. Narayanaswamy, N., Raman, V., Ramanujan, M., Saurabh, S.: LP can be a cure for Parameterized Problems. In: STACS 2012, pp. 338–349 (2012)

    Google Scholar 

  25. Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms via skew-symmetric multicuts. CoRR, abs/1304.7505 (2013), Accepted to SODA 2014

    Google Scholar 

  26. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed parameter tractable. SIAM J. Comput. 38(5), 2007–2020 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Guillemot, S., Marx, D. (2013). A Faster FPT Algorithm for Bipartite Contraction. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics